(2013•濰坊一模)設(shè)函數(shù)f(x)=
1
3
mx3+(4+m)x2,g(x)=alnx
,其中a≠0.
( I )若函數(shù)y=g(x)圖象恒過定點(diǎn)P,且點(diǎn)P在y=f(x)的圖象上,求m的值;
(Ⅱ)當(dāng)a=8時(shí),設(shè)F(x)=f′(x)+g(x),討論F(x)的單調(diào)性;
(Ⅲ)在(I)的條件下,設(shè)G(x)=
f(x),x≤1
g(x),x>1
,曲線y=G(x)上是否存在兩點(diǎn)P、Q,使△OPQ(O為原點(diǎn))是以O(shè)為直角頂點(diǎn)的直角三角形,且該三角形斜邊的中點(diǎn)在y軸上?如果存在,求a的取值范圍;如果不存在,說明理由.
分析:( I )點(diǎn)P與a的取值無關(guān),令lnx=0即可求點(diǎn)P,代入y=f(x),可得m值;
(Ⅱ)m=8時(shí),求出F(x),F(xiàn)′(x),在定義域內(nèi)按m≥0,m<0兩種情況討論解不等式F′(x)>0,F(xiàn)′(x)<0即可;
(Ⅲ)由(I)知G(x)=
-x3+x2,x≤1
alnx,x>1
,先假設(shè)曲線y=G(x)上存在滿足題意的兩點(diǎn)P、Q,易知P、Q兩點(diǎn)在y軸兩側(cè),由此可設(shè)P(t,G(t))(t>0)、Q(-t,t3+t2),由題意知∠POQ為直角,從而有
OP
OQ
=0
,即-t2+G(t)(t3+t2)=0①.分(1)0<t≤1時(shí),(2)t>1時(shí)兩種情況進(jìn)行討論,此時(shí)可知G(t)表達(dá)式,(1)種情況易判斷,(2)種情況分離出參數(shù)a后構(gòu)造函數(shù),轉(zhuǎn)化為求函數(shù)值域可以解決;
解答:解:(I)令lnx=0,則x=1,即函數(shù)y=g(x)的圖象過定點(diǎn)P(1,0),
又點(diǎn)P在y=f(x)的圖象上,所以f(1)=
1
3
m+(4+m)=0,
解得m=-3.
(II)F(x)=mx2+2(4+m)x+8lnx,定義域?yàn)椋?,+∞),
F′(x)=2mx+(8+2m)+
8
x
=
2mx2+(8+2m)x+8
x
=
(2mx+8)(x+1)
x

∵x>0,則x+1>0,
∴當(dāng)m≥0時(shí),2mx+8>0,F(xiàn)′(x)>0,此時(shí)F(x)在(0,+∞)上單調(diào)遞增,
當(dāng)m<0時(shí),由F′(x)>0得0<x<-
4
m
,F(xiàn)′(x)<0,得x>-
4
m
,
此時(shí)F(x)在(0,-
4
m
)上為增函數(shù),在(-
4
m
,+∞)上為減函數(shù),
綜上,當(dāng)m≥0時(shí),F(xiàn)(x)在(0,+∞)上為增函數(shù),
m<0時(shí),在(0,-
4
m
)上為增函數(shù),在(-
4
m
,+∞)上為減函數(shù).
(III)由條件(I)知G(x)=
-x3+x2,x≤1
alnx,x>1
,
假設(shè)曲線y=G(x)上存在兩點(diǎn)P、Q滿足題意,則P、Q兩點(diǎn)只能在y軸兩側(cè),
設(shè)P(t,G(t))(t>0),則Q(-t,t3+t2),
∵∠POQ是以O(shè)為直角頂點(diǎn)的直角三角形,
OP
OQ
=0
,∴-t2+G(t)(t3+t2)=0①.
(1)當(dāng)0<t≤1時(shí),G(t)=-t3+t2,
此時(shí)方程①為-t2+(-t3+t2)(t3+t2)=0,化簡得t4-t2+1=0,
此方程無解,滿足條件的P、Q兩點(diǎn)不存在.
(2)當(dāng)t>1時(shí),G(t)=alnt,
方程①為:-t2+alnt•(t3+t2)=0,即
1
a
=(t+1)lnt,
設(shè)h(t)=(t+1)lnt(t>1),則h′(t)=lnt+
1
t
+1,
當(dāng)t>1時(shí),h′(t)>0,即h(t)在(1,+∞)上為增函數(shù),
∴h(t)的值域?yàn)椋╤(1),+∞)),即(0,+∞),
1
a
>0,∴a>0.
綜上所述,如果存在滿足條件的P、Q,則a的取值范圍是a>0.
點(diǎn)評:本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查對數(shù)函數(shù)的特殊點(diǎn),考查學(xué)生對存在性問題的探究解決能力,解決(Ⅲ)問的關(guān)鍵通過分析條件合理設(shè)點(diǎn)P、Q的坐標(biāo).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•濰坊一模)設(shè)集合A={x|2x≤4},集合B為函數(shù)y=lg(x-1)的定義域,則A∩B=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•濰坊一模)如圖,在邊長為2的菱形ABCD中,∠BAD=60°,E為BC中點(diǎn),則
AE
BD
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•濰坊一模)某車隊(duì)準(zhǔn)備從甲、乙等7輛車中選派4輛參加救援物資的運(yùn)輸工作,并按出發(fā)順序前后排成一隊(duì),要求甲、乙至少有一輛參加,且若甲、乙同時(shí)參加,則它們出發(fā)時(shí)不能相鄰,那么不同排法種數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•濰坊一模)已知數(shù)列{an}的各項(xiàng)排成如圖所示的三角形數(shù)陣,數(shù)陣中每一行的第一個(gè)數(shù)a1,a2,a4,a7,…構(gòu)成等差數(shù)列{bn},Sn是{bn}的前n項(xiàng)和,且b1=a1=1,S5=15.
( I )若數(shù)陣中從第三行開始每行中的數(shù)按從左到右的順序均構(gòu)成公比為正數(shù)的等比數(shù)列,且公比相等,已知a9=16,求a50的值;
(Ⅱ)設(shè)Tn=
1
Sn+1
+
1
Sn+2
+…+
1
S2n
,當(dāng)m∈[-1,1]時(shí),對任意n∈N*,不等式t3-2mt-
8
3
Tn
恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•濰坊一模)復(fù)數(shù)z=
3+i
1-i
的共軛復(fù)數(shù)
.
z
=( 。

查看答案和解析>>

同步練習(xí)冊答案