【題目】已知定義域為[0,e]的函數(shù)f(x)同時滿足: ①對于任意的x∈[0,e],總有f(x)≥0;
②f(e)=e;
③若x1≥0,x2≥0,x1+x2≤e,則恒有f(x1+x2)≥f(x1)+f(x2).
(1)求f(0)的值;
(2)證明:不等式f(x)≤e對任意x∈[0,e]恒成立;
(3)若對于任意x∈[0,e],總有4f2(x)﹣4(2e﹣a)f(x)+4e2﹣4ea+1≥0,求實數(shù)a的取值范圍.

【答案】
(1)解:令x1=0,x2=0,得f(0)≤0,

又對于任意的x∈[0,e],總有f(x)≥0,

∴f(0)=0,


(2)解:證明:設0≤x1≤x2≤e,則x2﹣x1∈(0,e]

∴f(x2)﹣f(x1)=f((x2﹣x1)+x1)﹣f(x1)≥f(x2﹣x1)+f(x1)﹣f(x1)=f(x2﹣x1)≥0,

∴f(x2)≥f(x1),

∴f(x)在[0,e]上是單調(diào)遞增的,

∴f(x)≤f(e)=e,


(3)解:∵f(x)在[0,e]上是增函數(shù),

∴f(x)∈[0,e],

∵4f2(x)﹣4(2e﹣a)f(x)+4e2﹣4ea+1≥0,

∴4f2(x)﹣8ef(x)+4e2+1≥4a[e﹣f(x)],

當f(x)≠e時,

a≤

令y= = =e﹣f(x)+ ≥e,當且f(x)=e﹣ 時取等號,

∴a≤e,

當f(x)=e時,4f2(x)﹣4(2e﹣a)f(x)+4e2﹣4ea+1=4e2﹣4(2e﹣a)e+4e2﹣4ea+1=1≥0恒成立,

綜上所述a≤e.


【解析】(1)令x1=0,x2=0代入即可得到答案,(2)用定義確定函數(shù)f(x)在[0,e]上是單調(diào)遞增的,求出函數(shù)的最值即可,(3)先根據(jù)函數(shù)f(x)的單調(diào)性確定函數(shù)f(x)的取值范圍,再分離參數(shù)的方法將a表示出來用基本不等式求出a的范圍.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C:y2=﹣4x. (Ⅰ)已知點M在拋物線C上,它與焦點的距離等于5,求點M的坐標;
(Ⅱ)直線l過定點P(1,2),斜率為k,當k為何值時,直線l與拋物線:只有一個公共點;兩個公共點;沒有公共點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,多面體ABCDPE的底面ABCD是平行四邊形,AD=AB=2, =0,PD⊥平面ABCD,EC∥PD,且PD=2EC=2,則二面角A﹣PB﹣E的大小為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若a,b是函數(shù)f(x)=x2﹣px+q(p>0,q>0)的兩個不同的零點,且a,b,﹣4這三個數(shù)可適當排序后成等差數(shù)列,也可適當排序后成等比數(shù)列,則p+q的值等于(
A.16
B.10
C.26
D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)是奇函數(shù),且對于任意x∈R滿足f(2﹣x)=f(x),當0<x≤1時,f(x)=lnx+2,則函數(shù)y=f(x)在(﹣2,4]上的零點個數(shù)是(
A.7
B.8
C.9
D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在等差數(shù)列{an}中,a15+a16+a17=﹣45,a9=﹣36,Sn為其前n項和.
(1)求Sn的最小值,并求出相應的n值;
(2)求Tn=|a1|+|a2|+…+|an|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量 =(4,5cosα), =(3,﹣4tanα),α∈(0, ),
(1)求| |;
(2)求cos( +α)﹣sin(α﹣π).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】觀察下列等式: (sin 2+(sin 2= ×1×2;
(sin 2+(sin 2+(sin 2+sin( 2= ×2×3;
(sin 2+(sin 2+(sin 2+…+sin( 2= ×3×4;
(sin 2+(sin 2+(sin 2+…+sin( 2= ×4×5;

照此規(guī)律,
(sin 2+(sin 2+(sin 2+…+(sin 2=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在等比數(shù)列{an}中,a1=2,a3 , a2+a4 , a5成等差數(shù)列.
(1)求數(shù)列{an}的通項公式
(2)若數(shù)列{bn}滿足b1+ +…+ =an(n∈N*),{bn}的前n項和為Sn , 求使Sn﹣nan+6≥0成立的正整數(shù)n的最大值.

查看答案和解析>>

同步練習冊答案