【題目】在集合的子集中選出4個不同的子集,需同時滿足以下兩個條件:
(1),都要選出;(2)對選出的任意兩個子集和,必有或;
那么具有_______種不同的選法;
【答案】36
【解析】
根據(jù)題意對集合集合中的元素個數(shù)進(jìn)行分類討論,確定B相應(yīng)的結(jié)果,然后應(yīng)用計數(shù)原理得到答案.
因?yàn)?/span>,都要選出,而所有任意兩個子集的組合必須有包含關(guān)系,
所以需要選擇的子集有和,
因?yàn)閷θ我獾淖蛹?/span>和有,,
所以只需對選出的子集和有,或,
不妨設(shè).且和均為的非空真子集.
若集合元素個數(shù)為1,有四種選法,
(1)子集元素個數(shù)為2,當(dāng)子集為時,子集的2個元素中必須包含,
剩下的一個從中選取有三種選法,所以這種子集的選取方法共有4×3=12種.
(2)子集中包含3個元素,同理三個元素必須有一個與子集中的元素相同,共有4×3=12種.
若集合元素個數(shù)為2,有6種取法,子集必須有3個元素且必須包含前面一個子集的兩個元素,
有兩種取法,所以這種方法有6×2=12種
綜上一共有12+12+12=36種
故答案為:36.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商店投入38萬元經(jīng)銷某種紀(jì)念品,經(jīng)銷時間共60天,為了獲得更多的利潤,商店將每天獲得的利潤投入到次日的經(jīng)營中,市場調(diào)研表明,該商店在經(jīng)銷這第一產(chǎn)品期間第天的利潤(單位:萬元,),記第天的利潤率,例如.
(1)求的值;
(2)求第天的利潤率;
(3)該商店在經(jīng)銷此紀(jì)念品期間,哪一天的利潤率最大?并求該天的利潤率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知為等邊三角形,為等腰直角三角形,,平面平面ABD,點(diǎn)E與點(diǎn)D在平面ABC的同側(cè),且,.點(diǎn)F為AD中點(diǎn),連接EF.
(1)求證:平面ABC;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)的極值;
(2)當(dāng) 時,判斷函數(shù)在區(qū)間上零點(diǎn)的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系上,有一點(diǎn)列,設(shè)點(diǎn)的坐標(biāo)(),其中. 記,,且滿足().
(1)已知點(diǎn),點(diǎn)滿足,求的坐標(biāo);
(2)已知點(diǎn),(),且()是遞增數(shù)列,點(diǎn)在直線:上,求;
(3)若點(diǎn)的坐標(biāo)為,,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年6月,國內(nèi)的運(yùn)營牌照開始發(fā)放.從到,我們國家的移動通信業(yè)務(wù)用了不到20年的時間,完成了技術(shù)上的飛躍,躋身世界先進(jìn)水平.為了解高校學(xué)生對的消費(fèi)意愿,2019年8月,從某地在校大學(xué)生中隨機(jī)抽取了1000人進(jìn)行調(diào)查,樣本中各類用戶分布情況如下:
用戶分類 | 預(yù)計升級到的時段 | 人數(shù) |
早期體驗(yàn)用戶 | 2019年8月至2019年12月 | 270人 |
中期跟隨用戶 | 2020年1月至2021年12月 | 530人 |
后期用戶 | 2022年1月及以后 | 200人 |
我們將大學(xué)生升級時間的早晚與大學(xué)生愿意為套餐支付更多的費(fèi)用作比較,可得出下圖的關(guān)系(例如早期體驗(yàn)用戶中愿意為套餐多支付5元的人數(shù)占所有早期體驗(yàn)用戶的).
(1)從該地高校大學(xué)生中隨機(jī)抽取1人,估計該學(xué)生愿意在2021年或2021年之前升級到的概率;
(2)從樣本的早期體驗(yàn)用戶和中期跟隨用戶中各隨機(jī)抽取1人,以表示這2人中愿意為升級多支付10元或10元以上的人數(shù),求的分布列和數(shù)學(xué)期望;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)).
(1)若,直線與曲線相交于兩點(diǎn),求;
(2)若,求曲線上的點(diǎn)到直線的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A是圓錐的頂點(diǎn),是圓錐底面的直徑,C是底面圓周上一點(diǎn),,與底面所成角的大小為60°,過點(diǎn)A作截面,截去部分后的幾何體如圖所示.
(1)求異面直線與所成角的大。
(2)求該幾何體的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com