設(shè)
f(
x)=
.
(1)證明:
f(
x)在其定義域上的單調(diào)性;
(2)證明: 方程
f-1(
x)=0有惟一解;
(3)解不等式
f[
x(
x-
)]<
.
(1) 證明略(2)證明略(3)
或
由
得
f(
x)的定義域為(-1,1),
易判斷
f(
x)在(-1,1)內(nèi)是減函數(shù).
(2)證明:∵
f(0)=
,∴
f--1(
)=0,即
x=
是方程
f--1(
x)=0的一個解.
若方程
f--1(
x)=0還有另一個解
x0≠
,則
f--1(
x0)=0,
由反函數(shù)的定義知
f(0)=
x0≠
,與已知矛盾,故方程
f--1(
x)=0有惟一解
(3)解:
f[
x(
x-
)]<
,即
f[
x(
x-
)]<
f(0).
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分14分)已知函數(shù)
(1)畫出函數(shù)的圖像,寫出
的單調(diào)區(qū)間;
(2)設(shè)
,求
在
上的最大值
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
某工廠今年1月、2月、3月生產(chǎn)某產(chǎn)品分別為1萬件,1.2萬件, 1.3萬件,為了估計以后每月的產(chǎn)量,以這三個月的產(chǎn)量為依據(jù),用一個函數(shù)模擬該產(chǎn)品的月產(chǎn)量y與月份x的關(guān)系,模擬函數(shù)可以選用二次函數(shù)或函數(shù)y=a·bx+c(a,b,c)為常數(shù)。已知四月份該產(chǎn)品的產(chǎn)量為1.37萬件,請問用以上哪個函數(shù)作模擬函數(shù)較好?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)
f(
x)是定義在R上的偶函數(shù),其圖像關(guān)于直線
x=1對稱,對任意
x1、
x2∈[0,
],都有
f(
x1+
x2)=
f(
x1)·
f(
x2),且
f(1)=
a>0.
(1)求
f(
)、
f(
);
(2)證明
f(
x)是周期函數(shù);
(3)記
an=
f(2
n+
),求
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
某家電生產(chǎn)企業(yè)根據(jù)市場調(diào)查分析,決定調(diào)整產(chǎn)品生產(chǎn)方案,準(zhǔn)備每周(按120個工時計算)生產(chǎn)空調(diào)器、彩電、冰箱共360臺,且冰箱至少生產(chǎn)60臺. 已知生產(chǎn)家電產(chǎn)品每臺所需工時和每臺產(chǎn)值如下表:
家電名稱
| 空調(diào)器
| 彩電
| 冰箱
|
工時
|
|
|
|
產(chǎn)值(千元)
| 4
| 3
| 2
|
問每周應(yīng)生產(chǎn)空調(diào)器、彩電、冰箱各多少臺,才能使產(chǎn)值最高?最高產(chǎn)值是多少?(以千元為單位)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知二次函數(shù)f(x)=4x2-2(p-2)x-2p2-p+1,若在區(qū)間[-1,1]內(nèi)至少存在一個實數(shù)c,使f(c)>0,則實數(shù)p的取值范圍是_________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
定義在
上的函數(shù)
的圖象關(guān)于點
成中心對稱,對任意的實數(shù)
都有
,且
,則
的值為
A. | B. | C.0 | D.1 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
試判斷以下各組函數(shù)是否表示同一函數(shù)?
(1)
,
;
(2)
,
(3)
,
(
n∈N
*);
(4)
,
;
(5)
,
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)在△ABC中,∠C = 90
o ,BC = 1.以A為圓心,AC為半徑畫弧交AB于D,在由弧CD與直線段BD、BC所圍成的范圍內(nèi)作內(nèi)接正方形EFGH(如圖)。設(shè)AC = x,EF =" y" ,(1)求y與x的函數(shù)關(guān)系式;(2)正方形EFGH的面積是否有最大值?試證明你的結(jié)論。
查看答案和解析>>