【題目】從某小區(qū)抽取100戶居民進(jìn)行月用電量調(diào)查,發(fā)現(xiàn)其用電量都在50至350度之間,頻率分布直方圖如圖所示,在這些用戶中,用電量落在區(qū)間[150,250)內(nèi)的戶數(shù)為 .
【答案】52
【解析】解:由用電量落在區(qū)間[150,250)內(nèi)頻率為:
1﹣(0.0024+0.0036+0.0024+0.0012)×50=0.52,
∴用電量落在區(qū)間[150,250)內(nèi)的戶數(shù)為:
100×0.52=52.
所以答案是:52.
【考點精析】通過靈活運用頻率分布直方圖,掌握頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息即可以解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線C1的參數(shù)方程為: (α為參數(shù)),以原點為極點,x軸的正半軸為極軸,并取與直角坐標(biāo)系相同的長度單位,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為:ρ=cosθ. (Ⅰ)求曲線C2的直角坐標(biāo)方程;
(Ⅱ)若P,Q分別是曲線C1和C2上的任意一點,求|PQ|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點A(2sinx,﹣cosx)、B( cosx,2cosx),記f(x)= .
(1)若x0是函數(shù)y=f(x)﹣1的零點,求tanx0的值;
(2)求f(x)在區(qū)間[ , ]上的最值及對應(yīng)的x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次耐力和體能測試之后,某校對其甲、乙、丙、丁四位學(xué)生的耐力成績()和體能成績()進(jìn)行回歸分析,求得回歸直線方程為.由于某種原因,成績表(如下表所示)中缺失了乙的耐力和體能成績.
甲 | 乙 | 丙 | 丁 | |
耐力成績(X) | 7.5 | m | 8 | 8.5 |
體能成績(Y) | 8 | n | 8.5 | 9.5 |
綜合素質(zhì) () | 15.5 | 16 | 16.5 | 18 |
(Ⅰ)請設(shè)法還原乙的耐力成績和體能成績;
(Ⅱ)在區(qū)域性校際學(xué)生身體綜合素質(zhì)比賽中,由甲、乙、丙、丁四位學(xué)生組成學(xué)校代表隊參賽.共舉行3場比賽,每場比賽均由賽事主辦方從學(xué)校代表中隨機(jī)抽兩人參賽,每場比賽所抽的選手中,只要有一名選手的綜合素質(zhì)分高于16分,就能為所在學(xué)校贏得一枚榮譽獎?wù)拢粲洷荣愔汹A得榮譽獎?wù)碌拿稊?shù)為,試根據(jù)上表所提供數(shù)據(jù),預(yù)測該校所獲獎?wù)聰?shù)的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=cosωx(sinωx+ cosωx)(ω>0),如果存在實數(shù)x0 , 使得對任意的實數(shù)x,都有f(x0)≤f(x)≤f(x0+2016π)成立,則ω的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= x2+ax﹣lnx(a∈R).
(1)當(dāng)a=1時,求函數(shù)f(x)的極值;
(2)當(dāng)a>1時,討論函數(shù)f(x)的單調(diào)性;
(3)若對任意a∈(3,4)及任意x1 , x2∈[1,2],恒有 m+ln2>|f(x1)﹣f(x2)|成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某單位有50名職工,現(xiàn)要從中抽取 10名職工,將全體職工隨機(jī)按1~50編號,并按編號順序平均分成10組,按各組內(nèi)抽取的編號依次增加5進(jìn)行系統(tǒng)抽樣.
(Ⅰ)若第5組抽出的號碼為22,寫出所有被抽出職工的號碼;
(Ⅱ)分別統(tǒng)計這10名職工的體重(單位:公斤),獲得體重數(shù)據(jù)的莖葉圖如圖所示,求該樣本的平均數(shù)、中位數(shù)和方差;
(Ⅲ)在(Ⅱ)的條件下,從這10名職工中隨機(jī)抽取兩名體重不輕于73公斤(73公斤)的職工,求體重為81公斤的職工被抽取到的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙、丁四個物體同時從某一點出發(fā)向同一個方向運動,其路程fi(x)(i=1,2,3,4)關(guān)于時間x(x≥0)的函數(shù)關(guān)系式分別為f1(x)=2x﹣1,f2(x)=x3 , f3(x)=x,f4(x)=log2(x+1),有以下結(jié)論:
①當(dāng)x>1時,甲走在最前面;
②當(dāng)x>1時,乙走在最前面;
③當(dāng)0<x<1時,丁走在最前面,當(dāng)x>1時,丁走在最前面;
④丙不可能走在最前面,也不可能走在最后面;
⑤如果它們一直運動下去,最終走在最前面的是甲.
其中,正確結(jié)論的序號為(把正確結(jié)論的序號都填上,多填或少填均不得分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓C1: +y2=1,雙曲線C2: =1(a>0,b>0),若以C1的長軸為直徑的圓與C2的一條漸近線交于A,B兩點,且C1與該漸近線的兩交點將線段AB三等分,則C2的離心率為( )
A.
B.5
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com