已知函數(shù)
(Ⅰ)若函數(shù)在其定義域上為單調函數(shù),求的取值范圍;
(Ⅱ)若函數(shù)的圖像在處的切線的斜率為0,,已知求證:
(Ⅲ)在(2)的條件下,試比較的大小,并說明理由.      

(Ⅰ);(Ⅱ)略;(Ⅲ)<.

解析試題分析:(Ⅰ)利用導數(shù)求解單調性,把恒成立轉化為最值;(Ⅱ)可用數(shù)學歸納法來證明;(Ⅲ)通過放縮法來解決的大小比較問題.
試題解析:(Ⅰ) ∵f(1)="a-b=0" ∴a=b


要使函數(shù)在其定義域上為單調函數(shù),則在定義域(0,+∞)內(nèi)恒大于等于0或恒小于等于0,
當a=0時,在(0,+∞)內(nèi)恒成立;
當a>0時, 恒成立,則
當a<0時, 恒成立
∴a的取值范圍是:       5分
(Ⅱ)   ∴a=1   則:
于是
用數(shù)學歸納法證明如下:
當n=1時,,不等式成立;
假設當n=k時,不等式成立,即也成立,
當n=k+1時,
所以當n=k+1時不等式成立,
綜上得對所有時,都有         10分
(Ⅲ)由(2)得

于是
所以 ,
累稱得:
所以    13分
考點:利用導數(shù)處理單調性,數(shù)列中的數(shù)學歸納法、放縮法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知,是函數(shù)的兩個零點,其中常數(shù),,設
(Ⅰ)用,表示,;
(Ⅱ)求證:
(Ⅲ)求證:對任意的

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列{an}滿足a1λ,an+1ann-4,λ∈R,n∈N,對任意λ
∈R,證明:數(shù)列{an}不是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

數(shù)列滿足,
(Ⅰ)求、;
(Ⅱ)求的表達式;
(Ⅲ)令,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知多項式f(n)=n5n4n3n.
(1)求f(-1)及f(2)的值;
(2)試探求對一切整數(shù)nf(n)是否一定是整數(shù)?并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設曲線在點處的切線斜率為,且.對一切實數(shù),不等式恒成立(≠0).
(1) 求的值;
(2) 求函數(shù)的表達式;
(3) 求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知為正整數(shù),試比較的大小 .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知復數(shù),則的值為(   )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

復數(shù)(i是虛數(shù)單位)的共軛復數(shù)為(       ).

A.2-i B.-2-i C.-2+i D.2+i

查看答案和解析>>

同步練習冊答案