【題目】隨著經(jīng)濟(jì)全球化、信息化的發(fā)展,企業(yè)之間的競爭從資源的爭奪轉(zhuǎn)向人才的競爭,吸引、留住培養(yǎng)和用好人才成為人力資源管理的戰(zhàn)略目標(biāo)和緊迫任務(wù),在此背景下,某信息網(wǎng)站在15個城市中對剛畢業(yè)的大學(xué)生的月平均收入薪資和月平均期望薪資做了調(diào)查,數(shù)據(jù)如下圖所示.
(1)若某大學(xué)畢業(yè)生從這15座城市中隨機(jī)選擇一座城市就業(yè),求該生選中月平均收入薪資高于8500元的城市的概率;
(2)現(xiàn)有2名大學(xué)畢業(yè)生在這15座城市中各隨機(jī)選擇一座城市就業(yè),且2人的選擇相互獨(dú)立,記X為選中月平均收入薪資高于8500元的城市的人數(shù),求X的分布列和數(shù)學(xué)期望E(X);
(3)記圖中月平均收入薪資對應(yīng)數(shù)據(jù)的方差為,月平均期望薪資對應(yīng)數(shù)據(jù)的方差為,判斷與的大小(只需寫出結(jié)論)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x+m|+|2x-1|.
(1)當(dāng)m=-1時(shí),求不等式f(x)≤2的解集;
(2)若f(x)≤|2x+1|的解集包含,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)院體檢中心為回饋大眾,推出優(yōu)惠活動:對首次參加體檢的人員,按200元次收費(fèi),并注冊成為會員,對會員的后續(xù)體檢給予相應(yīng)優(yōu)惠,標(biāo)準(zhǔn)如下:
體檢次序 | 第一次 | 第二次 | 第三次 | 第四次 | 第五次及以上 |
收費(fèi)比例 | 1 | 0.95 | 0.90 | 0.85 | 0.8 |
該體檢中心從所有會員中隨機(jī)選取了100位對他們在本中心參加體檢的次數(shù)進(jìn)行統(tǒng)計(jì),得到數(shù)據(jù)如下表:
體檢次數(shù) | 一次 | 兩次 | 三次 | 四次 | 五次及以上 |
頻數(shù) | 60 | 20 | 10 | 5 | 5 |
假設(shè)該體檢中心為顧客體檢一次的成本費(fèi)用為150元,根據(jù)所給數(shù)據(jù),解答下列問題:
(1)該體檢中心要從這100人里至少體檢3次的會員中,按體檢次數(shù)用分層抽樣的方法抽出8人,再從這8人中抽出2人發(fā)放紀(jì)念品,求抽出的2人中恰有1人體檢3次的概率;
(2)若以這100位會員體檢次數(shù)的頻率分布估計(jì)該體檢中心所有會員體檢次數(shù)的概率分布,已知該中心本周共接待了1000名顧客參加體檢,試估計(jì)該體檢中心本周所獲利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓的右頂點(diǎn)為,過點(diǎn)作直線與圓相切,與橢圓交于另一點(diǎn),與右準(zhǔn)線交于點(diǎn).設(shè)直線的斜率為.
(1)用表示橢圓的離心率;
(2)若,求橢圓的離心率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在棱長為1的正方體中,E,F(xiàn)分別為線段CD和上的動點(diǎn),且滿足,則四邊形所圍成的圖形(如圖所示陰影部分)分別在該正方體有公共頂點(diǎn)的三個面上的正投影的面積之和( 。
A. 有最小值B. 有最大值C. 為定值3D. 為定值2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為F,點(diǎn)P為拋物線C上一點(diǎn),,O為坐標(biāo)原點(diǎn),.
(1)求拋物線C的方程;
(2)設(shè)Q為拋物線C的準(zhǔn)線上一點(diǎn),過點(diǎn)F且垂直于OQ的直線交拋物線C于A,B兩點(diǎn)記,的面積分別為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1) 討論的單調(diào)性;
(2) 設(shè),當(dāng)時(shí), ,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,四邊形是邊長為2的正方形,,為的中點(diǎn),點(diǎn)在上,平面,在的延長線上,且.
(1)證明:平面.
(2)過點(diǎn)作的平行線,與直線相交于點(diǎn),點(diǎn)為的中點(diǎn),求到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)三棱錐的每個頂點(diǎn)都在球的球面上,是面積為的等邊三角形,,,且平面平面.
(1)確定的位置(需要說明理由),并證明:平面平面.
(2)與側(cè)面平行的平面與棱,,分別交于,,,求四面體的體積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com