設(shè)橢圓的左、右焦點分別為,上頂點為,離心率為 , 在軸負(fù)半軸上有一點,且

(1)若過三點的圓 恰好與直線相切,求橢圓C的方程;
(2)在(1)的條件下,過右焦點作斜率為的直線與橢圓C交于兩點,在軸上是否存在點,使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍;如果不存在,說明理由.

(1);(2)存在滿足題意的點的取值范圍是

解析試題分析:(1)由題意,得,所以 
  由于,所以的中點,
所以
所以的外接圓圓心為,半徑  3分
又過三點的圓與直線相切,
所以解得,
所求橢圓方程為   6分
(2)有(1)知,設(shè)的方程為:
將直線方程與橢圓方程聯(lián)立
,整理得
設(shè)交點為,因為
  8分
若存在點,使得以為鄰邊的平行四邊形是菱形,
由于菱形對角線垂直,所以
 
的方向向量是,故,則
,即
由已知條件知  11分
,故存在滿足題意的點的取值范圍 是  13分
考點:本題主要考查橢圓標(biāo)準(zhǔn)方程,直線方程,直線與橢圓的位置關(guān)系,存在性問題研究,平面向量的坐標(biāo)運算。
點評:難題,曲線關(guān)系問題,往往通過聯(lián)立方程組,得到一元二次方程,運用韋達(dá)定理。本題求橢圓標(biāo)準(zhǔn)方程時,主要運用了橢圓的幾何性質(zhì)。對于存在性問題,往往先假設(shè)存在,利用已知條件加以探究,以明確計算的合理性。本題(III)通過確定m的表達(dá)式,利用函數(shù)思想,通過求函數(shù)的最值,確定得到其范圍。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

過拋物線的焦點作傾斜角為的直線交拋物線于、兩點,過點作拋物線的切線軸于點,過點作切線的垂線交軸于點。

(1) 若,求此拋物線與線段以及線段所圍成的封閉圖形的面積。
(2) 求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知雙曲線與橢圓有相同的焦點,點、分別是橢圓的右、右頂點,若橢圓經(jīng)過點
(1)求橢圓的方程;
(2)已知是橢圓的右焦點,以為直徑的圓記為,過點引圓的切線,求此切線的方程;
(3)設(shè)為直線上的點,是圓上的任意一點,是否存在定點,使得?若存在,求出定點的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

直線與橢圓交于兩點,已知
,若且橢圓的離心率,又橢圓經(jīng)過點,
為坐標(biāo)原點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線過橢圓的焦點為半焦距),求直線的斜率的值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,F(xiàn)1,F(xiàn)2是離心率為的橢圓
C:(a>b>0)的左、右焦點,直線:x=-將線段F1F2分成兩段,其長度之比為1 : 3.設(shè)A,B是C上的兩個動點,線段AB的中點M在直線l上,線段AB的中垂線與C交于P,Q兩點.

(Ⅰ) 求橢圓C的方程;
(Ⅱ) 是否存在點M,使以PQ為直徑的圓經(jīng)過點F2,若存在,求出M點坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若橢圓的中心在原點,焦點在軸上,短軸的一個端點與左右焦點、組成一個正三角形,焦點到橢圓上的點的最短距離為.
(1)求橢圓的方程;
(2)過點作直線與橢圓交于、兩點,線段的中點為,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線l經(jīng)過點(0,-2),其傾斜角是60°.
(1)求直線l的方程;
(2)求直線l與兩坐標(biāo)軸圍成三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知
(Ⅰ)判斷曲線的切線能否與曲線相切?并說明理由;
(Ⅱ)若的最大值;
(Ⅲ)若,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)
如圖,已知橢圓=1(ab>0),F1F2分別為橢圓的左、右焦點,A為橢圓的上的頂點,直線AF2交橢圓于另 一點B.

(1)若∠F1AB=90°,求橢圓的離心率;
(2)若=2·,求橢圓的方程.

查看答案和解析>>

同步練習(xí)冊答案