14.對武漢市工薪階層關(guān)于“樓市限購政策”的態(tài)度進行調(diào)查,隨機抽查了50人,他們月收入(單位:百元)的頻數(shù)分布及對“樓市限購政策”贊成人數(shù)如表:
月收入(百元)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
頻數(shù)510151055
贊成人數(shù)3812421
(1)從這50人是否贊成“樓市限購政策”采取分層抽樣,抽取一個容量為10的樣本,問樣本中贊成與不贊成“樓市限購政策”的人數(shù)各有多少名?
(2)根據(jù)以上統(tǒng)計數(shù)據(jù)填寫下面2*2的列聯(lián)表,并回答是否有95%的把握認(rèn)為月收入以55百元為分界點對“樓市限購政策”的態(tài)度有差異?
月收入低于55百元人數(shù)月收入不低于55百元人數(shù)合計
贊成a=27b=330
不贊成c=13d=720
合計401040
(參考公式:${{K}^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
P( K2≥k)0.0500.0100.001
k3.8416.63510.828

分析 (1)50人中有30人贊成,故抽取10人的樣本,其中6人贊成,4人不贊成;
(2)根據(jù)提供數(shù)據(jù),可填寫表格,利用公式,可計算K2的值,根據(jù)臨界值表,即可得到結(jié)論.

解答 解:(1)50人中有30人贊成,故抽取10人的樣本,其中6人贊成,4人不贊成.…(6分)
(2)

月收入低于55百元人數(shù)月收入不低于55百元人數(shù)合計
贊成a=27b=330
不贊成c=13d=720
合計401050
${{K}^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$=$\frac{{50{{(27×7-13×3)}^2}}}{40×10×30×20}=4.6875>3.841$
有95%的把握認(rèn)為月收入以55百元為分界點對“樓市限購政策”的態(tài)度有差異.…(12分)

點評 本題考查獨立性檢驗的應(yīng)用和2×2列聯(lián)表的作法,考查分層抽樣,考查學(xué)生的計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.執(zhí)行如圖所示的程序框圖,則輸出的 a=( 。
A.1B.-1C.-4D.$-\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.方程log2x+x=3的解所在區(qū)間是(  )
A.(0,1)B.(1,2)C.(3,+∞)D.[2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知點P為線段y=2x,x∈[2,4]上任意一點,點Q為圓C:(x-3)2+(y+2)2=1上一動點,則線段|PQ|的最小值為$\sqrt{37}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.橢圓$\frac{x^2}{16}+\frac{y^2}{9}=1$中,以點M(1,2)為中點的弦所在直線斜率為( 。
A.$\frac{9}{16}$B.$\frac{9}{32}$C.$\frac{9}{64}$D.$-\frac{9}{32}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.$C_{27}^1+C_{27}^2+C_{27}^3+…+C_{27}^{27}$除以9的余數(shù)為(  )
A.2B.4C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知${({x^{\frac{2}{3}}}+3{x^2})^n}$的展開式中,各項系數(shù)和與它的二項式系數(shù)和的比為32.
(1)求展開式中二項式系數(shù)最大的項;
(2)求展開式中所有的有理項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知復(fù)數(shù)a,b∈R,i是虛數(shù)單位,若a-i與2+bi互為共軛復(fù)數(shù),則a+bi=( 。
A.2-iB.1+2iC.1-2iD.2+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=ln(ex+e-x)+x2,則使得f(2x)>f(x+3)成立的x的取值范圍是( 。
A.(-1,3)B.(-∞,-3)∪(3,+∞)C.(-3,3)D.(-∞,-1)∪(3,+∞)

查看答案和解析>>

同步練習(xí)冊答案