對(duì)于數(shù)列{an},定義數(shù)列{an+1-an}為數(shù)列{an}的“差數(shù)列”,若a1=2,{an}的“差數(shù)列”的通項(xiàng)為2n,則數(shù)列{an}的前n項(xiàng)和Sn=
 
分析:先根據(jù)an+1-an=2n,對(duì)數(shù)列進(jìn)行疊加,最后求得an=2n.進(jìn)而根據(jù)等比數(shù)列的求和公式答案可得.
解答:解:∵an+1-an=2n
∴an=(an-an-1)+(an-1-an-2)++(a2-a1)+a1
=2n-1+2n-2++22+2+2
=
2-2n
1-2
+2=2n-2+2=2n
∴Sn=
2-2n
1-2
=2n+1-2.
故答案為2n+1-2
點(diǎn)評(píng):本題主要考查了數(shù)列的求和.對(duì)于an+1-an=p的形式?捎茂B加法求得數(shù)列通項(xiàng)公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+(a-3)x+a2-3a(a為常數(shù)).
(1)如果對(duì)任意x∈[1,2],f(x)>a2恒成立,求實(shí)數(shù)a的取值范圍;
(2)設(shè)實(shí)數(shù)p,q,r滿足:p,q,r中的某一個(gè)數(shù)恰好等于a,且另兩個(gè)恰為方程f(x)=0的兩實(shí)根,判斷①p+q+r,②p2+q2+r2,③p3+q3+r3是否為定值?若是定值請(qǐng)求出:若不是定值,請(qǐng)把不是定值的表示為函數(shù)g(a),并求g(a)的最小值;
(3)對(duì)于(2)中的g(a),設(shè)H(a)=-
16
[g(a)-27]
,數(shù)列{an}滿足an+1=H(an)(n∈N*),且a1∈(0,1),試判斷an+1與an的大小,并證明之.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)
是f(x)圖象上的兩點(diǎn),橫坐標(biāo)為
1
2
的點(diǎn)P滿足2
OP
=
OM
+
ON
(O為坐標(biāo)原點(diǎn)).
(1)求證:y1+y2為定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,n≥2令an=
1
6
,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn為數(shù)列{an}的前n項(xiàng)和,若Tn<m(Sn+1+1)對(duì)一切n∈N*都成立,試求m的取值范圍.
(3)對(duì)于給定的實(shí)數(shù)a(a>1)是否存在這樣的數(shù)列{an},使得f(an)=log3(
3
an+1)
,且a1=
1
a-1
?若存在,求出a滿足的條件;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:湖北模擬 題型:解答題

已知函數(shù)f(x)=x2+(a-3)x+a2-3a(a為常數(shù)).
(1)如果對(duì)任意x∈[1,2],f(x)>a2恒成立,求實(shí)數(shù)a的取值范圍;
(2)設(shè)實(shí)數(shù)p,q,r滿足:p,q,r中的某一個(gè)數(shù)恰好等于a,且另兩個(gè)恰為方程f(x)=0的兩實(shí)根,判斷①p+q+r,②p2+q2+r2,③p3+q3+r3是否為定值?若是定值請(qǐng)求出:若不是定值,請(qǐng)把不是定值的表示為函數(shù)g(a),并求g(a)的最小值;
(3)對(duì)于(2)中的g(a),設(shè)H(a)=-
1
6
[g(a)-27]
,數(shù)列{an}滿足an+1=H(an)(n∈N*),且a1∈(0,1),試判斷an+1與an的大小,并證明之.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年5月湖北省襄樊五中高考數(shù)學(xué)模擬試卷(文科)(解析版) 題型:解答題

已知函數(shù)f(x)=x2+(a-3)x+a2-3a(a為常數(shù)).
(1)如果對(duì)任意x∈[1,2],f(x)>a2恒成立,求實(shí)數(shù)a的取值范圍;
(2)設(shè)實(shí)數(shù)p,q,r滿足:p,q,r中的某一個(gè)數(shù)恰好等于a,且另兩個(gè)恰為方程f(x)=0的兩實(shí)根,判斷①p+q+r,②p2+q2+r2,③p3+q3+r3是否為定值?若是定值請(qǐng)求出:若不是定值,請(qǐng)把不是定值的表示為函數(shù)g(a),并求g(a)的最小值;
(3)對(duì)于(2)中的g(a),設(shè),數(shù)列{an}滿足an+1=H(an)(n∈N*),且a1∈(0,1),試判斷an+1與an的大小,并證明之.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省揚(yáng)州市寶應(yīng)縣曹甸高級(jí)中學(xué)高考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

已知函數(shù)f(x)=x2+(a-3)x+a2-3a(a為常數(shù)).
(1)如果對(duì)任意x∈[1,2],f(x)>a2恒成立,求實(shí)數(shù)a的取值范圍;
(2)設(shè)實(shí)數(shù)p,q,r滿足:p,q,r中的某一個(gè)數(shù)恰好等于a,且另兩個(gè)恰為方程f(x)=0的兩實(shí)根,判斷①p+q+r,②p2+q2+r2,③p3+q3+r3是否為定值?若是定值請(qǐng)求出:若不是定值,請(qǐng)把不是定值的表示為函數(shù)g(a),并求g(a)的最小值;
(3)對(duì)于(2)中的g(a),設(shè),數(shù)列{an}滿足an+1=H(an)(n∈N*),且a1∈(0,1),試判斷an+1與an的大小,并證明之.

查看答案和解析>>

同步練習(xí)冊(cè)答案