【題目】已知下列命題:
①設為直線,為平面,且,則“”是“”的充要條件;
②若是的充分不必要條件,則是的必要不充分條件;;
③已知,為兩個命題,若“”為假命題,則“為真命題”
④若不等式恒成立,則的取值范圍是;
⑤若命題有,則有;
其中真命題的序號是____________(寫出全部真命題的序號).
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)= ,曲線y=f(x)在點(1,f(1))處的切線與直線x+y+1=0垂直. (Ⅰ)求a的值;
(Ⅱ)若對于任意的x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求m的取值范圍;
(Ⅲ)求證:ln(4n+1)≤16 (n∈N*).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校按分層抽樣的方法從高中三個年級抽取部分學生調(diào)查,從三個年級抽取人數(shù)的比例為如圖所示的扇形面積比,已知高二年級共有學生1 200人,并從中抽取了40人.
(1)該校的總人數(shù)為多少?(2)三個年級分別抽取多少人?
(3)在各層抽樣中可采取哪種抽樣方法?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|a﹣3x|﹣|2+x|.
(1)若a=2,解不等式f(x)≤3;
(2)若存在實數(shù)a,使得不等式f(x)≥1﹣a+2|2+x|成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將函數(shù)y=sin(ωx+φ)(ω>0,|φ|<π的圖象向左平移 個單位,再將圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變)所得的圖象解析式為y=sinx,則y=sin(ωx+φ)圖象上離y軸距離最近的對稱中心為( )
A.( ,0)
B.( π,0)
C.(﹣ ,0)
D.(﹣ ,0)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某城市有一塊半徑為40m的半圓形綠化區(qū)域(以O為圓心,AB為直徑),現(xiàn)對其進行改建,在AB的延長線上取點D,OD=80m,在半圓上選定一點C,改建后綠化區(qū)域由扇形區(qū)域AOC和三角形區(qū)域COD組成,其面積為Scm2 . 設∠AOC=xrad.
(1)寫出S關于x的函數(shù)關系式S(x),并指出x的取值范圍;
(2)試問∠AOC多大時,改建后的綠化區(qū)域面積S取得最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若定義在R上的偶函數(shù)f(x)滿足f(x﹣1)=f(x+1).且當x∈[﹣1,0]時,f(x)=﹣x2+1,如果函數(shù)g(x)=f(x)﹣a|x|恰有8個零點,則實數(shù)a的值為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關系進行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
設農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;
(2)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關于x的線性回歸方程=bx+a;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(注:==,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,橢圓: ()的離心率為,左焦點為,右焦點為,短軸兩個端點、,與軸不垂直的直線與橢圓交于不同的兩點、,記直線、的斜率分別為、,且.
(1)求橢圓的方程;
(2)求證直線與軸相交于定點,并求出定點坐標;
(3)當弦的中點落在內(nèi)(包括邊界)時,求直線的斜率的取值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com