【題目】已知下列命題:

①設為直線,為平面,且,則“”是“”的充要條件;

②若的充分不必要條件,則的必要不充分條件;;

已知為兩個命題,若“”為假命題,則“為真命題”

④若不等式恒成立,則的取值范圍是

⑤若命題,則;

其中真命題的序號是____________(寫出全部真命題的序號).

【答案】②③

【解析】可知平面與平面的法向量相互垂直,則,故充分性成立,當時,此時直線由可能在平面上,即不成立,必要性不成立,所以①錯誤;的充分不必要條件,根據(jù)原命題與逆否命題的等價性可得,的必要不充分條件,②正確;,若為假命題,則都是假命題,都是真命題,為真命題,③正確; ,,,錯誤;⑤因為全稱命題的否定是特稱命題,錯誤,

真命題的序號是②③,故答案為②③.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設f(x)= ,曲線y=f(x)在點(1,f(1))處的切線與直線x+y+1=0垂直. (Ⅰ)求a的值;
(Ⅱ)若對于任意的x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求m的取值范圍;
(Ⅲ)求證:ln(4n+1)≤16 (n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校按分層抽樣的方法從高中三個年級抽取部分學生調(diào)查,從三個年級抽取人數(shù)的比例為如圖所示的扇形面積比,已知高二年級共有學生1 200,并從中抽取了40.

(1)該校的總人數(shù)為多少?(2)三個年級分別抽取多少人?

(3)在各層抽樣中可采取哪種抽樣方法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|a﹣3x|﹣|2+x|.
(1)若a=2,解不等式f(x)≤3;
(2)若存在實數(shù)a,使得不等式f(x)≥1﹣a+2|2+x|成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)y=sin(ωx+φ)(ω>0,|φ|<π的圖象向左平移 個單位,再將圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變)所得的圖象解析式為y=sinx,則y=sin(ωx+φ)圖象上離y軸距離最近的對稱中心為(
A.( ,0)
B.( π,0)
C.(﹣ ,0)
D.(﹣ ,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某城市有一塊半徑為40m的半圓形綠化區(qū)域(以O為圓心,AB為直徑),現(xiàn)對其進行改建,在AB的延長線上取點D,OD=80m,在半圓上選定一點C,改建后綠化區(qū)域由扇形區(qū)域AOC和三角形區(qū)域COD組成,其面積為Scm2 . 設∠AOC=xrad.

(1)寫出S關于x的函數(shù)關系式S(x),并指出x的取值范圍;
(2)試問∠AOC多大時,改建后的綠化區(qū)域面積S取得最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若定義在R上的偶函數(shù)f(x)滿足f(x﹣1)=f(x+1).且當x∈[﹣1,0]時,f(x)=﹣x2+1,如果函數(shù)g(x)=f(x)﹣a|x|恰有8個零點,則實數(shù)a的值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關系進行分析研究,他們分別記錄了12月1日12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

設農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進行檢驗.

1求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;

2若選取的是12月1日12月5日的兩組數(shù)據(jù),請根據(jù)12月2日12月4日的數(shù)據(jù),求出y關于x的線性回歸方程=bx+a;

3若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

(注:,)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,橢圓 )的離心率為,左焦點為,右焦點為,短軸兩個端點、,與軸不垂直的直線與橢圓交于不同的兩點、,記直線、的斜率分別為、,且.

1)求橢圓的方程;

2)求證直線軸相交于定點,并求出定點坐標;

3)當弦的中點落在內(nèi)(包括邊界)時,求直線的斜率的取值.

查看答案和解析>>

同步練習冊答案