某市為增強(qiáng)市民的環(huán)境保護(hù)意識(shí),面向全市征召義務(wù)宣傳志愿者.把符合條件的1000名志愿者按年齡分組:第1組[20,25)、第2組[25,30)、第3組[30,35)、第4組[35,40)、第5組[40,45],得到的頻率分布直方圖如圖所示:

(1)若從第3、4、5組中用分層抽樣的方法抽取12名志愿者參加廣場(chǎng)的宣傳活動(dòng),應(yīng)從第3、4、5組各抽

取多少名志愿者?

(2)在(1)的條件下,該市決定在這12名志愿者中隨機(jī)抽取3名志愿者介紹宣傳經(jīng)驗(yàn),求第4組至少有一名

志愿者被抽中的概率;

(3)在(2)的條件下,若ξ表示抽出的3名志愿者中第3組的人數(shù),求ξ的分布列和數(shù)學(xué)期望.


 (1) 人、人、人;(2) ;(3)分布列見(jiàn)解析,.

【解析】

 (2)從名志愿者中抽取名共有種可能,

組至少有一位志愿者被抽中有種可能,

所以第組至少有一位志愿者被抽中的概率為.       …………………7分

(3)的可能取值為,

,


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:


如圖所示是一個(gè)有n層(n≥2,nN*)的六邊形點(diǎn)陣,它的中心是一個(gè)點(diǎn),算作第1層,第2層每邊有2個(gè)點(diǎn),第3層每邊有3個(gè)點(diǎn),…,第n層每邊有n個(gè)點(diǎn),則這個(gè)點(diǎn)陣共有__________個(gè)點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


把一個(gè)位數(shù)從左到右的每個(gè)數(shù)字依次記為,如果都是完全平方數(shù),則稱(chēng)這個(gè)數(shù)為“方數(shù)”.現(xiàn)將1,2,3按照任意順序排成一個(gè)沒(méi)有重復(fù)數(shù)字的三位數(shù),這個(gè)數(shù)是“方數(shù)”的概率為(     )

A.0           B.             C.             D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


已知等差數(shù)列項(xiàng)和為,且+=13,=35,則=(  ) 

8            9           10           11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


函數(shù),則_______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


平面直角坐標(biāo)系中,直線的參數(shù)方程是為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為

(Ⅰ)求直線的極坐標(biāo)方程;

(Ⅱ)若直線與曲線相交于兩點(diǎn),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


一個(gè)算法的程序框圖如圖,則其輸出結(jié)果是(    )

A.0    B.     C.    D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


已知曲線C的極坐標(biāo)方程為,直線的參數(shù)方程為(t為參數(shù),).

(1)把曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,并說(shuō)明曲線C的形狀;

(2)若直線經(jīng)過(guò)點(diǎn),求直線被曲線C截得的線段AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


已知A1,A2,B是橢圓=1(a>b>0)的頂點(diǎn)(如圖),直線l與橢圓交于異于頂點(diǎn)的P,Q兩點(diǎn),且l∥A2B,若橢圓的離心率是,且|A2B|=。

(1)求此橢圓的方程;

(2)設(shè)直線A1P和直線BQ的傾斜角分別為α,β,試判斷α+β是否為定值?若是,求出此定值;若不是,說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案