【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:千元)對年銷售量(單位: )和年利潤(單位:千元)的影響.對近8年的年宣傳費(fèi)和年銷售量數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計量的值.
表中.
(1)根據(jù)散點(diǎn)圖判斷與哪一個適宜作為年銷售量關(guān)于年宣傳費(fèi)的回歸類型?(給出判斷即可,不必說明理由)
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程;
(3)已知這種產(chǎn)品的利潤與的的關(guān)系為.根據(jù)(2)的結(jié)果回答下列問題:
(。┠晷麄髻M(fèi)時,年銷售量及年利潤的預(yù)報值是多少?
(ⅱ)年宣傳費(fèi)為何值時,年利潤的預(yù)報值最大?
附:對于一組數(shù)據(jù),其回歸直線的的斜率和截距的最小二乘估計為.
【答案】(1)適宜作為年銷售量關(guān)于年宣傳費(fèi)的回歸方程類型;(2);
(3)①年銷售量的預(yù)報值,年利潤的預(yù)報值.②年宣傳費(fèi)為46.24千元.
【解析】試題分析:(1)根據(jù)散點(diǎn)圖,即可判斷出;(2)先建立中間量,建立關(guān)于的線性回歸方程,根據(jù)公式求出,問題得以解決;(3)①年宣傳費(fèi)時,代入回歸方程,計算即可;②求出預(yù)報值的方程,根據(jù)函數(shù)性質(zhì),即可求出.
試題解析:(1)由散點(diǎn)圖可以判斷, 適宜作為年銷售量關(guān)于年宣傳費(fèi)的回歸方程類型.
(2)令,先建立關(guān)于的線性回歸方程.
由于,所以關(guān)于的線性回歸方程為,
因此關(guān)于的回歸方程為.
(3)①由(2)知,當(dāng)時,年銷售量的預(yù)報值,
年利潤的預(yù)報值.
②根據(jù)(2)的結(jié)果知,年利潤的預(yù)報值.
所以當(dāng),即時, 取得最大值.
故年宣傳費(fèi)為46.24千元時,年利潤的預(yù)報值最大.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=2cos2x+ sin2x﹣1.
(1)求f(x)的最大值及此時的x值
(2)求f(x)的單調(diào)減區(qū)間
(3)若x∈[﹣ , ]時,求f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的離心率為 ,A(a,0),B(0,b),O(0,0),△OAB的面積為4,
(1)求橢圓的標(biāo)準(zhǔn)方程
(2)設(shè)直線l:y=kx+1與橢圓C相交于P,Q兩點(diǎn),是否存在這樣的實(shí)數(shù)k,使得以PQ為直徑的圓過原點(diǎn),若存在,請求出k的值:若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ax﹣a﹣x(a>0且a≠1)
(1)若f(1)<0,求a的取值范圍;
(2)若f(1)= ,g(x)=a2x+a﹣2x﹣2mf(x)且g(x)在[1,+∞)上的最小值為﹣2,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等比數(shù)列的公比為,前項(xiàng)和.
(1)求的取值范圍;
(2)設(shè),記的前項(xiàng)和為,試比較與的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
設(shè)函數(shù)f(x)=x2-x+15,且|x-a|<1,
(1)若,求的取值范圍;
(2)求證:|f(x)-f(a)|<2(|a|+1).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐P﹣ABCD,底面ABCD是直角梯形,AD∥BC,∠BCD=90°,PA⊥底面ABCD,△ABM是邊長為2的等邊三角形, .
(Ⅰ)求證:平面PAM⊥平面PDM;
(Ⅱ)若點(diǎn)E為PC中點(diǎn),求二面角P﹣MD﹣E的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】F1 , F2分別是雙曲線x2﹣ =1(b>0)的左、右焦點(diǎn),過F2的直線l與雙曲線的左右兩支分別交于A,B兩點(diǎn),若△ABF1是等邊三角形,則該雙曲線的虛軸長為( )
A.2
B.2
C.
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°.BC=CC1=a,AC=2a.
(1)求證:AB1⊥BC1;
(2)求二面角B﹣AB1﹣C的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com