【題目】如圖是求樣本x1、x2、…x10平均數(shù) 的程序框圖,圖中空白框中應填入的內(nèi)容為(
A.S=S+xn
B.S=S+
C.S=S+n
D.S=S+

【答案】A
【解析】解:由題目要求可知:該程序的作用是求樣本x1 , x2 , …,x10平均數(shù) , 由于“輸出 ”的前一步是“ = ”,
故循環(huán)體的功能是累加各樣本的值,
故應為:S=S+xn
故選:A.
【考點精析】根據(jù)題目的已知條件,利用平均數(shù)、中位數(shù)、眾數(shù)和程序框圖的相關知識可以得到問題的答案,需要掌握⑴平均數(shù)、眾數(shù)和中位數(shù)都是描述一組數(shù)據(jù)集中趨勢的量;⑵平均數(shù)、眾數(shù)和中位數(shù)都有單位;⑶平均數(shù)反映一組數(shù)據(jù)的平均水平,與這組數(shù)據(jù)中的每個數(shù)都有關系,所以最為重要,應用最廣;⑷中位數(shù)不受個別偏大或偏小數(shù)據(jù)的影響;⑸眾數(shù)與各組數(shù)據(jù)出現(xiàn)的頻數(shù)有關,不受個別數(shù)據(jù)的影響,有時是我們最為關心的數(shù)據(jù);程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應操作的程序框;帶箭頭的流程線;程序框外必要文字說明.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣ ,g(x)= ﹣1. (Ⅰ)若a>0,試判斷f(x)在定義域內(nèi)的單調(diào)性;
(Ⅱ)若f(x)在[1,e]上的最小值為 ,求a的值;
(Ⅲ)當a=0時,若x≥1時,恒有xf(x)≤λ[g(x)+x]成立,求λ的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,∠ACB=90°,BB1=3,AC=BC=2,D,E分別為AB,BC的中點,F(xiàn)為BB1上一點,且 =
(1)求證:平面CDF⊥平面A1C1E;
(2)求二面角C1﹣CD﹣F的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=2AD,E為邊AB的中點,將△ADE沿直線DE翻轉(zhuǎn)成△A1DE(A1平面ABCD),若M、O分別為線段A1C、DE的中點,則在△ADE翻轉(zhuǎn)過程中,下列說法錯誤的是(
A.與平面A1DE垂直的直線必與直線BM垂直
B.異面直線BM與A1E所成角是定值
C.一定存在某個位置,使DE⊥MO
D.三棱錐A1﹣ADE外接球半徑與棱AD的長之比為定值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A是拋物線y2=4x上的一點,以點A和點B(2,0)為直徑的圓C交直線x=1于M,N兩點.直線l與AB平行,且直線l交拋物線于P,Q兩點. (Ⅰ)求線段MN的長;
(Ⅱ)若 =﹣3,且直線PQ與圓C相交所得弦長與|MN|相等,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某手機賣場對市民進行國產(chǎn)手機認可度的調(diào)查,隨機抽取100名市民,按年齡(單位:歲)進行統(tǒng)計的頻數(shù)分布表和頻率分布直方圖如下:

分組(歲)

頻數(shù)

[25,30)

x

[30,35)

y

[35,40)

35

[40,45)

30

[45,50]

10

合計

100

(Ⅰ)求頻率分布表中x、y的值,并補全頻率分布直方圖;
(Ⅱ)在抽取的這100名市民中,按年齡進行分層抽樣,抽取20人參加國產(chǎn)手機用戶體驗問卷調(diào)查,現(xiàn)從這20人重隨機抽取2人各贈送精美禮品一份,設這2名市民中年齡在[35,40)內(nèi)的人數(shù)為X,求X的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《孫子算經(jīng)》是我國古代的數(shù)學著作,其卷下中有類似如下的問題:“今有方物一束,外周一匝有四十枚,問積幾何?”如右圖是解決該問 題的程序框圖,若設每層外周枚數(shù)為a,則輸出的結果為(

A.81
B.74
C.121
D.169

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線 的左右焦點分別為F1 , F2 , 過右焦點F2的直線交雙曲線于A,B兩點,連接AF1 , BF1 . 若|AB|=|BF1|,且∠ABF1=90°,則雙曲線的離心率為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,已知△ABC的面積為accosB,BC的中點為D. (Ⅰ) 求cosB的值;
(Ⅱ) 若c=2,asinA=5csinC,求AD的長.

查看答案和解析>>

同步練習冊答案