已知橢圓
+
=1(a>b>0)上的點M (1,
)到它的兩焦點F
1,F(xiàn)
2的距離之和為4,A、B分別是它的左頂點和上頂點。
(Ⅰ)求此橢圓的方程及離心率;
(Ⅱ)平行于AB的直線l與橢圓相交于P、Q兩點,求|PQ|的最大值及此時直線l的方程。
解:
本試題主要是考查橢圓的方程和橢圓的幾何性質,以及直線與橢圓的位置關系的綜合運用。聯(lián)立方程組,結合韋達定理求解和運算。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知中心在原點,焦點在x軸上的橢圓離心率為
,且經(jīng)過點
,過橢圓的左焦點作直線
交橢圓于A、B兩點,以OA、OB為鄰邊作平行四邊形OAPB。
(1)求橢圓E的方程
(2)現(xiàn)將橢圓E上的點的縱坐標保持不變,橫坐標變?yōu)樵瓉淼囊话,求所得曲線的焦點坐標和離心率
(3)是否存在直線
,使得四邊形OAPB為矩形?若存在,求出直線
的方程。若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓中心在原點,焦點在x軸上,離心率e=
,它與直線x+y+1=0交于P、Q兩點,若OP⊥OQ,求橢圓方程。(O為原點)。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知F
1,F
2是橢圓
的左、右焦點,點P在橢圓上,且
記線段PF
1與y軸的交點為Q,O為坐標原點,若△F
1OQ與四邊形OF
2PQ的面積之比為1: 2,則該橢圓的離心率等于 ( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的離心率為
,定點
,橢圓短軸的端點是
,
,且
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設過點
且斜率不為
的直線交橢圓
于
,
兩點.試問
軸上是否存在定點
,使
平分
?若存在,求出點
的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知點F是橢圓
的右焦點,過原點的直線交橢圓于點A、P,PF垂直于x軸,直線AF交橢圓于點B,
,則該橢圓的離心率
=
___▲___.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題10分)
設
分別為橢圓
的左、右兩個焦點.(1)若橢圓
上的點
兩點的距離之和等于4,求橢圓
的方程和焦點坐標;(2)設點P是(1)中所得橢圓上的動點,
。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
橢圓
的離心率為
,則實數(shù)
的值為___________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
設
是橢圓
的不垂直于對稱軸的弦,
為
的中點,
為坐標原點,則
____________
查看答案和解析>>