【題目】如圖1,在等腰直角三角形ABC中,∠A=90°,BC=6,D,E分別是AC,AB上的點(diǎn), ,O為BC的中點(diǎn).將△ADE沿DE折起,得到如圖2所示的四棱椎A(chǔ)′﹣BCDE,其中A′O= .
(1)證明:A′O⊥平面BCDE;
(2)求二面角A′﹣CD﹣B的平面角的余弦值.
【答案】
(1)證明:連接OD,OE.
因?yàn)樵诘妊苯侨切蜛BC中,∠B=∠C=45°, ,CO=BO=3.
在△COD中, ,同理得 .
因?yàn)? , .
所以A′O2+OD2=A′D2,A′O2+OE2=A′E2.
所以∠A′OD=∠A′OE=90°
所以A′O⊥OD,A′O⊥OE,OD∩OE=O.
所以A′O⊥平面BCDE.
(2)方法一:
過點(diǎn)O作OF⊥CD的延長(zhǎng)線于F,連接A′F
因?yàn)锳′O⊥平面BCDE.
根據(jù)三垂線定理,有A′F⊥CD.
所以∠A′FO為二面角A′﹣CD﹣B的平面角.
在Rt△COF中, .
在Rt△A′OF中, = .
所以 .
所以二面角A′﹣CD﹣B的平面角的余弦值為 .
方法二:
取DE中點(diǎn)H,則OH⊥OB.
以O(shè)為坐標(biāo)原點(diǎn),OH、OB、OA′分別為x、y、z軸建立空間直角坐標(biāo)系.
則O(0,0,0),A′(0,0, ),C(0,﹣3,0),D(1,﹣2,0) =(0,0, )是平面BCDE的一個(gè)法向量.
設(shè)平面A′CD的法向量為n=(x,y,z) , .
所以 ,令x=1,則y=﹣1, .
所以 是平面A′CD的一個(gè)法向量
設(shè)二面角A′﹣CD﹣B的平面角為θ,且
所以
所以二面角A′﹣CD﹣B的平面角的余弦值為
【解析】(1)連接OD,OE.在等腰直角三角形ABC中,∠B=∠C=45°, ,AD=AE= ,CO=BO=3.分別在△COD與△OBE中,利用余弦定理可得OD,OE.利用勾股定理的逆定理可證明∠A′OD=∠A′OE=90°,再利用線面垂直的判定定理即可證明;(2)方法一:過點(diǎn)O作OF⊥CD的延長(zhǎng)線于F,連接A′F.利用(1)可知:A′O⊥平面BCDE,根據(jù)三垂線定理得A′F⊥CD,所以∠A′FO為二面角A′﹣CD﹣B的平面角.在直角△OCF中,求出OF即可;方法二:取DE中點(diǎn)H,則OH⊥OB.以O(shè)為坐標(biāo)原點(diǎn),OH、OB、OA′分別為x、y、z軸建立空間直角坐標(biāo)系.利用兩個(gè)平面的法向量的夾角即可得到二面角.
【考點(diǎn)精析】掌握直線與平面垂直的判定是解答本題的根本,需要知道一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,設(shè)S為△ABC的面積,滿足S=(a2+c2﹣b2).
(1)求角B的大小;
(2)若邊b=,求a+c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線的焦點(diǎn)為,點(diǎn)是拋物線上一點(diǎn),且.
(1)求的值;
(2)若為拋物線上異于的兩點(diǎn),且.記點(diǎn)到直線的距離分別為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求的極值;
(2)當(dāng)時(shí),討論的單調(diào)性;
(3)若對(duì)任意的,,恒有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個(gè)籃球隊(duì)在4次不同比賽中的得分情況如下:
甲隊(duì) | 88 | 91 | 92 | 96 |
乙隊(duì) | 89 | 93 | 9▓ | 92 |
乙隊(duì)記錄中有一個(gè)數(shù)字模糊(即表中陰影部分),無法確認(rèn),假設(shè)這個(gè)數(shù)字具有隨機(jī)性,并用表示.
(Ⅰ)在4次比賽中,求乙隊(duì)平均得分超過甲隊(duì)平均得分的概率;
(Ⅱ)當(dāng)時(shí),分別從甲、乙兩隊(duì)的4次比賽中各隨機(jī)選取1次,記這2個(gè)比賽得分之差的絕對(duì)值為,求隨機(jī)變量的分布列;
(Ⅲ)如果乙隊(duì)得分?jǐn)?shù)據(jù)的方差不小于甲隊(duì)得分?jǐn)?shù)據(jù)的方差,寫出的取值集合.(結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中.
(Ⅰ)當(dāng)時(shí),求函數(shù)的極值;
(Ⅱ)當(dāng)時(shí),證明:函數(shù)不可能存在兩個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)行的個(gè)稅法修正案規(guī)定:個(gè)稅免征額由原來的2000元提高到3500元,并給出了新的個(gè)人所得稅稅率表:
全月應(yīng)納稅所得額 | 稅率 |
不超過1500元的部分 | 3% |
超過1500元至4500元的部分 | 10% |
超過4500元至9000元的部分 | 20% |
超過9000元至35000元的部分 | 25% |
…… | … |
例如某人的月工資收入為5000元,那么他應(yīng)納個(gè)人所得稅為:(元).
(Ⅰ)若甲的月工資收入為6000元,求甲應(yīng)納的個(gè)人收的稅;
(Ⅱ)設(shè)乙的月工資收入為元,應(yīng)納個(gè)人所得稅為元,求關(guān)于的函數(shù);
(Ⅲ)若丙某月應(yīng)納的個(gè)人所得稅為1000元,給出丙的月工資收入.(結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為正方形,平面,,與交于點(diǎn),,分別為,的中點(diǎn).
(Ⅰ)求證:平面平面;
(Ⅱ)求證:∥平面;
(Ⅲ)求證:平面.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com