(2007•淄博三模)如圖所示,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AB=2,BC=1,AA1=
3
,D為棱CC1的中點.
(I)證明:A1C⊥平面AB1C1;
(Ⅱ)設平面AB1C1與平面ABD所成的角為θ,求cosθ;
(Ⅲ)在棱AB上是否存在一點E,使DE∥平面AB1C1?證明你的結論.
分析:(I)先證明BC⊥平面ACC1A1,可得B1C1⊥A1C,再證明A1C⊥AC1,可得A1C⊥平面AB1C1;
(II)建立空間直角坐標系,求出平面ABD的法向量,利用向量的夾角公式,即可得出結論;
(III)當點E為棱AB的中點時,DE∥平面AB1C1.證明平面EFD∥平面AB1C1即可.
解答:(I)證明:∵∠ACB=90°,∴BC⊥AC
∵三棱柱ABC-A1B1C1為直三棱柱,∴BC⊥CC1
∵AC∩CC1=C
∴BC⊥平面ACC1A1,
∵A1C?平面ACC1A1,
∴BC⊥A1C
∵BC∥B1C1,則B1C1⊥A1C
∵Rt△ABC中,AB=2,BC=1,∴AC=
3

∵AA1=
3
,四邊形ACC1A1為正方形
∴A1C⊥AC1,
∵B1C1∩AC1=C1,
∴A1C⊥平面AB1C1;
(Ⅱ)解:如圖建立空間直角坐標系,則A(0,0,
3
),C(0,0,0),B(1,0,0),A1(0,
3
,
3
)
,C1(0,
3
,0)
B1(1,
3
,0)
,D(0,
3
2
,0)

由( I)可知平面AB1C1的法向量為
CA1
=(0,
3,
3

n
=(x,y,z)為平面ABD的法向量.
AB
=(1,0,-
3
),
AD
=(0,
3
2
,-
3
)

x-
3
z=0
y-2z=0

令z=1,則x=
3
,y=2
n
=(
3
,2,1)
∴cos<
.
n
,
CA1
>=
.
n
CA1
|
.
n
||
CA1
|
=
3
4

∴cosθ=
3
4
;
( III)解:當點E為棱AB的中點時,DE∥平面AB1C1
證明如下:
如圖,取BB1的中點F,連EF,F(xiàn)D,DE
∵D,E,F(xiàn)分別為CC1,AB,BB1的中點;
∴EF∥AB1,
∵AB1?平面AB1C1,EF?平面AB1C1,
∴EF∥平面AB1C1,
同理可證FD∥平面AB1C1,
∵EF∩FD=F
∴平面EFD∥平面AB1C1,
∵DE?平面EFD
∴DE∥AB1C1
點評:本題考查線面垂直,線面平行,線面角,考查學生分析解決問題的能力,考查向量知識的運用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2007•淄博三模)已知雙曲線x2-
y2
a
=1(a>0)
的一條漸近線與直線x-2y+3=0垂直,則該雙曲線的離心率是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•淄博三模)在二項式(
x
+
3
x
)n
的展開式中,各項系數(shù)之和為A,各項二項式系數(shù)之和為B,且A+B=72,則展開式中常數(shù)項的值為
9
9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•淄博三模)正方體ABCD-A1B1C1D1的棱長為1,在正方體表面上與點A距離是
2
3
3
的點形成一條曲線,這條曲線的長度是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•淄博三模)在△ABC中,a,b,c是內(nèi)角A,B,C的對邊,且b2=ac,cosB=
34

(1)求cotA+cotC的值;
(2)求sinA:sinB:sinC的比值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•淄博三模)復數(shù)z1=2+i,z2=-1+i,則
z1
z2
的共軛復數(shù)對應點在( 。

查看答案和解析>>

同步練習冊答案