9、如圖,正方體ABCD-A1B1C1D1中,E、F分別是棱C1C與BC的中點,則直線EF與直線D1C所成角的大小是
60°
分析:由題意得EF∥BC1∥AD1,可得直線EF與直線D1C所成角的大小和直線AD1與直線CD1所成角的大小相等,再根據(jù)立方體的結(jié)構(gòu)特征得到直線AD1與直線CD1所成角的大小為60°,進而得到答案.
解答:解:因為E、F分別是棱C1C與BC的中點,
所以EF∥BC1∥AD1
所以直線EF與直線D1C所成角的大小和直線AD1與直線CD1所成角的大小相等.
因為ABCD-A1B1C1D1是正方體,
所以直線AD1與直線CD1所成角的大小為60°,
所以直線EF與直線D1C所成角的大小為60°.
故答案為60°.
點評:解決此類問題的關鍵是熟悉求異面直線所成角的方法即平移直線或作其中一條直線的中位線.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,正方體ABCD-A1B1C1D1的棱長為a,它的各個頂點都在球O的球面上,問球O的表面積.
(1) 如果球O和這個正方體的六個面都相切,則有S=
 

(2)如果球O和這個正方體的各條棱都相切,則有S=
 

精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為BB1和A1D1的中點.證明:向量
A1B
B1C
、
EF
是共面向量.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,正方體ABCD-A1B1C1D1棱長為8,E、F分別為AD1,CD1中點,G、H分別為棱DA,DC上動點,且EH⊥FG.
(1)求GH長的取值范圍;
(2)當GH取得最小值時,求證:EH與FG共面;并求出此時EH與FG的交點P到直線B1B的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,若E、F、G分別為棱BC、C1C、B1C1的中點,O1、O2分別為四邊形ADD1A1、A1B1C1D1的中心,則下列各組中的四個點不在同一個平面上的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,正方體ABCD-A1B1C1D1中,E、F、G、H分別是所在棱的三等分點,且BF=DE=C1G=C1H=
13
AB

(1)證明:直線EH與FG共面;
(2)若正方體的棱長為3,求幾何體GHC1-EFC的體積.

查看答案和解析>>

同步練習冊答案