橢圓mx2+ny2=1與直線x+y=1交于M,N兩點(diǎn),MN的中點(diǎn)為P,且OP的斜率為
2
2
,則
m
n
的值為( 。
A、
2
2
B、
2
2
3
C、
9
2
2
D、
2
3
27
分析:設(shè)M(x1,y1),N(x2,y2),P(x0,y0)由KOP=
y0
x0
=
2
2
①,
y2-y1
x2-x1
=-1
②及M,N在橢圓上,可得
mx12+ny12=1
mx22+ny22=1
利用點(diǎn)差法進(jìn)行求解
解答:解:設(shè)M(x1,y1),N(x2,y2),P(x0,y0),
KOP=
y0
x0
=
2
2
①,
y2-y1
x2-x1
=-1
②,
由題意M,N在橢圓上,可得
mx12+ny12=1
mx22+ny22=1
,
兩式相減可得m(x1-x2)(x1+x2)+n(y1-y2)(y1+y2)=0③,
把①②代入③整理可得
m
n
=
2
2

故選:A.
點(diǎn)評:本題主要考查了直線與橢圓相交的位置關(guān)系,在涉及到與弦的斜率及中點(diǎn)有關(guān)時(shí)的常用方法有兩個(gè):①聯(lián)立直線與橢圓,根據(jù)方程求解②利用“點(diǎn)差法”,而第二種方法可以簡化運(yùn)算,注意應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•丹東模擬)已知雙曲線mx2-ny2=1(m>0,n>0)的離心率為2,則橢圓mx2+ny2=1的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若橢圓mx2+ny2=1與直線x+y-1=0交于A、B兩點(diǎn),過原點(diǎn)與線段AB中點(diǎn)的直線的斜率為
2
2
,則
m
n
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓mx2+ny2=1與直線x+y-1=0相交于A,B兩點(diǎn),過AB中點(diǎn)M與坐標(biāo)原點(diǎn)的直線的斜率為
2
2
,則
m
n
的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓mx2+ny2=1與直線x+y=1相交于A、B兩點(diǎn),M為AB的中點(diǎn),O為坐標(biāo)原點(diǎn),若直線OM的斜率為
2
,則
n
m
的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線y=1-x交橢圓mx2+ny2=1于M,N兩點(diǎn),MN的中點(diǎn)為P,若kop=
2
2
 (O為原點(diǎn)),則
m
n
等于(  )

查看答案和解析>>

同步練習(xí)冊答案