【題目】如圖,在三棱柱中,側(cè)面底面,,,分別為棱的中點(diǎn)
(1)求三棱柱的體積;
(2)在直線上是否存在一點(diǎn),使得平面?若存在,求出的長(zhǎng);若不存在,說(shuō)明理由.
【答案】(1);(2).
【解析】試題分析:(1)第(1)問(wèn),先證明底面ABC,計(jì)算出△ABC的面積,再利用柱體的體積公式求三棱柱的體積.(2)第(2)問(wèn),先假設(shè)在直線上存在點(diǎn)P,使得CP||平面AEF,再找到點(diǎn)P的位置,再求AP的長(zhǎng).
試題解析:
(1)三棱柱中,所以.
因?yàn)?/span>,所以.
又因?yàn)?/span>,
連接 ,所以△是邊長(zhǎng)為2的正三角形.
因?yàn)?/span>E是棱的中點(diǎn),所以,且
又,所以
又側(cè)面底面ABC,且側(cè)面底面ABC=AB,
又AE側(cè)面,所以底面ABC,
所以三棱柱的體積為
;
(2)在直線上存在點(diǎn)P,使得CP||平面AEF.
證明如下:連接并延長(zhǎng),與的延長(zhǎng)線相交,設(shè)交點(diǎn)為.連接.
因?yàn)?/span>,故
由于為棱的中點(diǎn),所以,故有
又為棱的中點(diǎn),故為的中位線,所以
又平面AEF,平面AEF, 所以平面AEF.
故在直線上存在點(diǎn)P,使得平面AEF.
此時(shí),所以 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】質(zhì)檢部門(mén)對(duì)某工廠甲、乙兩個(gè)車間生產(chǎn)的個(gè)零件質(zhì)量進(jìn)行檢測(cè).甲、乙兩個(gè)車間的零件質(zhì)量(單位:克)分布的莖葉圖如圖所示.零件質(zhì)量不超過(guò)克的為合格.
(1)質(zhì)檢部門(mén)從甲車間個(gè)零件中隨機(jī)抽取件進(jìn)行檢測(cè),若至少件合格,檢測(cè)即可通過(guò),若至少件合格,檢測(cè)即為良好,求甲車間在這次檢測(cè)通過(guò)的條件下,獲得檢測(cè)良好的概率;
(2)若從甲、乙兩車間個(gè)零件中隨機(jī)抽取個(gè)零件,用表示乙車間的零件個(gè)數(shù),求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),圓.
(1)若直線過(guò)點(diǎn)且到圓心的距離為,求直線的方程;
(2)設(shè)過(guò)點(diǎn)的直線與圓交于、兩點(diǎn)(的斜率為負(fù)),當(dāng)時(shí),求以線段為直徑的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的幾何體是由棱臺(tái)和棱錐拼接而成的組合體,其底面四邊形是邊長(zhǎng)為2的菱形,,平面.
(1)求證:;
(2)求平面與平面所成銳角二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程為,直線:,直線:.以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系.
(1)求直線,的直角坐標(biāo)方程以及曲線的參數(shù)方程;
(2)已知直線與曲線交于,兩點(diǎn),直線與曲線交于,兩點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中為常數(shù)且.
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)討論函數(shù)的單調(diào)性;
(3)當(dāng)時(shí),,若存在,使成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)z1是虛數(shù),z2=z1是實(shí)數(shù),且﹣1≤z2≤1.
(1)求|z1|的值以及z1的實(shí)部的取值范圍;
(2)若ω,求證ω為純虛數(shù);
(3)求z2﹣ω2的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司近年來(lái)特別注重創(chuàng)新產(chǎn)品的研發(fā),為了研究年研發(fā)經(jīng)費(fèi)(單位:萬(wàn)元)對(duì)年創(chuàng)新產(chǎn)品銷售額(單位:十萬(wàn)元)的影響,對(duì)近10年的研發(fā)經(jīng)費(fèi)與年創(chuàng)新產(chǎn)品銷售額(其中)的數(shù)據(jù)作了初步處理,得到如圖的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
其中,,,,
.現(xiàn)擬定關(guān)于的回歸方程為.
(1)求,的值(結(jié)果精確到);
(2)根據(jù)擬定的回歸方程,預(yù)測(cè)當(dāng)研發(fā)經(jīng)費(fèi)為萬(wàn)元時(shí),年創(chuàng)新產(chǎn)品銷售額是多少?
參考公式:
求線性回歸方程系數(shù)公式 :,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在即將進(jìn)入休漁期時(shí),某小微企業(yè)決定囤積一些冰鮮產(chǎn)品,銷售所囤積產(chǎn)品的凈利潤(rùn)f(x)萬(wàn)元與投入x萬(wàn)元之間近似滿足函數(shù)關(guān)系:,若投入2萬(wàn)元,可得到凈利潤(rùn)為5.2萬(wàn)元.
(1)試求該小微企業(yè)投入多少萬(wàn)元時(shí),獲得的凈利潤(rùn)最大;
(2)請(qǐng)判斷該小微企業(yè)是否會(huì)虧本,若虧本,求出投入資金的范圍,若不虧本,請(qǐng)說(shuō)明理由.(參考數(shù)據(jù):ln 2≈0.7,ln 15≈2.7)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com