解:(1)證明:連接AF,
∵在矩形ABCD中,AD=4,AB=2,F(xiàn)是線段BC的中點,
∴FC=CD,∴△FCD是等腰直角三角形,
∴∠DFC=45°,同理可得∠AFB=45°,
∴AF⊥FD.
又∵PA⊥面ABCD,∴PA⊥FD,∵AF∩PA=A
∴FD⊥平面PAF,∴PF⊥FD.(6分)
(2)在AP上存在點G,
且AG=
AP,使得EG∥平面PFD,
證明:取AD中點I,取AI中點H,連接BI,EH,EG,GH,
∵DI∥BF,DI=BF,∴四邊形BFDI是平行四邊形,
∴BI∥FD
又∵E、H分別是AB、AI的中點,
∴EH∥BI,∴EH∥FD
而EH?平面PFD,∴EH∥平面PFD
∵
=
=
,
∴GH∥PD
而GH?平面PFD,
∴HG∥平面PFD,又∵EH∩GH=H
∴平面EHG∥平面PFD
∴EG∥平面PFD,從而G為所求.
由PD與面ABCD所成角為30°,∴∠PDA=30°,
在直角三角PAD中,∴AP=
=
,
∴AG=
=
.
分析:(1)證明:連接AF,要證PF⊥FD,只要證FD⊥平面PAF,只要證PA⊥FD,AF⊥FD即可.
(2)取AD中點I,取AI中點H,連接BI,EH,EG,GH,易知四邊形BFDI是平行四邊形,所以BI∥FD,再由E、H分別是AB、AI的中點,得到EH∥BI,由公理4可得EH∥FD,所以EH∥平面PFD,由
=
=
,所以GH∥PD,有HG∥平面PFD,轉(zhuǎn)化為平面EHG∥平面PFD,得到EG∥平面PFD.
點評:本題主要考查線線,線面,面面平行,垂直關(guān)系的轉(zhuǎn)化與應(yīng)用,屬中檔題.