設(shè)F1、F2分別是橢圓+y2=1的左、右焦點(diǎn).
(1)若P是第一象限內(nèi)該橢圓上的一點(diǎn),且=-,求點(diǎn)P的坐標(biāo);
(2)設(shè)過(guò)定點(diǎn)M(0,2)的直線l與橢圓交于不同的兩點(diǎn)A、B,且∠AOB為銳角(其中O為坐標(biāo)原點(diǎn)),求直線l的斜率k的取值范圍.
解:(1)a=2,b=1,c=.∴F1(-,0),F2(,0).
設(shè)P(x,y)(x>0,y>0).則=(--x,-y)(-x,-y)=x2+y2-3=-,又+y2=1,
聯(lián)立,解得
(2)顯然x=0不滿足題設(shè)條件.可設(shè)l的方程為y=kx+2,設(shè)A(x1,y1),B(x2,y2).
聯(lián)立⇒x2+4(kx+2)2=4
⇒(1+4k2)x2+16kx+12=0
∴x1x2=,x1+x2=-
由Δ=(16k)2-4·(1+4k2)·12>0
16k2-3(1+4k2)>0,4k2-3>0,得k2>.①
又∠AOB為銳角⇔cos∠AOB>0⇔·>0,
∴·=x1x2+y1y2>0
又y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4
∴x1x2+y1y2=(1+k2)x1x2+2k(x1+x2)+4
綜合①②可知<k2<4,∴k的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知{an}是公差為d的等差數(shù)列,它的前n項(xiàng)和為Sn,S4=2S2+8.
(1)求公差d的值;
(2)若a1=1,設(shè)Tn是數(shù)列的前n項(xiàng)和,求使不等式Tn≥(m2-5m)對(duì)所有的n∈N*恒成立的最大正整數(shù)m的值;
(3)設(shè)bn=若對(duì)任意的n∈N*,都有bn≤b4成立,求a1的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知圓C的圓心是拋物線y=x2的焦點(diǎn).直線4x-3y-3=0與圓C相交于A,B兩點(diǎn),且|AB|=8,則圓C的方程為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
中心在坐標(biāo)原點(diǎn)的橢圓,焦點(diǎn)在x軸上,焦距為4,離心率為,則該橢圓的方程為( )
A.+=1 B.+=1
C.+=1 D.+=1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)F1,F2分別是橢圓=1的左、右焦點(diǎn),點(diǎn)P在橢圓上,若△PF1F2為直角三角形,則△PF1F2的面積等于________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
斜率為的直線與雙曲線=1(a>0,b>0)恒有兩個(gè)公共點(diǎn),則雙曲線離心率的取值范圍是( )
A.[2,+∞) B.(,+∞)
C.(1,) D.(2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1,F2在坐標(biāo)軸上,離心率為,且過(guò)點(diǎn)(4,-).點(diǎn)M(3,m)在雙曲線上.
(1)求雙曲線方程;
(2)求證:=0;
(3)求△F1MF2面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)動(dòng)點(diǎn)P在直線x-1=0上,O為坐標(biāo)原點(diǎn),以OP為直角邊,點(diǎn)O為直角頂點(diǎn)作等腰直角三角形OPQ,則動(dòng)點(diǎn)Q的軌跡是( )
A.橢圓 B.兩條平行直線
C.拋物線 D.雙曲線
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知數(shù)列{an}的前n項(xiàng)和Sn=kcn-k(其中c,k為常數(shù)),且a2=4,a6=8a3.
(1)求an;
(2)求數(shù)列{nan}的前n項(xiàng)和Tn.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com