給出如下四個命題:①方程
表示的圖形是圓;②橢圓橢圓
的離心率
;③拋物線
的準線的方程是
;④雙曲線
的漸近線方程是
。其中所有不正確命題的序號是
。
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖所示,已知圓
為圓上一動點,點P在AM上,點N在CM上,且滿足
的軌跡為曲線E.
(I)求曲線E的方程;
(II)過點A且傾斜角是45°的直線
l交曲線E于兩點H、Q,求|HQ|.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
給出下列曲線:①
;②
;③
;④
。其中與直線
有交點的所有曲線是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
和圓
,且圓C與x軸交于A
1,A
2兩點(1)設(shè)橢圓C
1的右焦點為F,點P的圓C上異于A
1,A
2的動點,過原點O作直線PF的垂線交橢圓的右準線交于點Q,試判斷直線PQ與圓C的位置關(guān)系,并給出證明。 (2)設(shè)點
在直線
上,若存在點
,使得
(O為坐標原點),求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓中心在原點,長軸在坐標軸上,離心率為
,短軸長為4,求橢圓標準方程
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分13分)
已知橢圓
,直線
與橢圓交于
、
兩點,
是線段
的中點,連接
并延長交橢圓于點
.
設(shè)直線
與直線
的斜率分別為
、
,且
,求橢圓的離心率.若直線
經(jīng)過橢圓的右焦點
,且四邊形
是平行四邊形,求直線
斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知
F1、
F2是雙曲線
的兩焦點,以線段
F1F2為邊作正三角形
MF1F2,若邊
MF1的中點在雙曲線上,則雙曲線的離心率是 ( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
橢圓
C1:
的左準線為
l,左右焦點分別為
F1、
F2,拋物線
C2的準線為
l,一個焦點為F
2,C
1與C
2的一個交點為P,則
等于( )
A.-1 | B.1 | C. | D. |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
己知斜率為1的直線l與雙曲線C:
-=1(a>0,b>0)相交于B、D兩點,且BD的中點為M(1,3).
(Ⅰ)求C的離心率;
(Ⅱ)設(shè)C的右頂點為A,右焦點為F,|DF|•|BF|=17,證明:過A、B、D三點的圓與x軸相切.
查看答案和解析>>