(2013•臨沂一模)給出下列四個命題:
①命題“?x∈R,cosx>0”的否定是:“?x∈R,cosx≤0”;
②若lga+lgb=lg(a+b),則a+b的最大值為4;
③定義在R上的奇函數(shù)f(x)滿足f(x+2)=-f(x),則f(6)的值為0;
④已知隨機(jī)變量ζ服從正態(tài)分布N(1,σ2),P(ζ≤5)=0.81,則P(ζ≤-3)=0.19;
其中真命題的序號是
①③④
①③④
(請把所有真命題的序號都填上).
分析:根據(jù)全稱命題的否定方法求出原命題的否定,可判斷①;利用基本不等式及對數(shù)的運(yùn)算性質(zhì),判斷a+b的取值范圍,可判斷②;利用奇函數(shù)的特性,結(jié)合已知,可求出f(6)的值,可判斷③;根據(jù)正態(tài)分布的對稱性,求出P(ζ≤-3)可判斷④.
解答:解:命題“?x∈R,cosx>0”的否定是:“?x∈R,cosx≤0”,故①正確;
由lga+lgb=lg(a•b)=lg(a+b)得a>0,b>0且a+b=a•b≤
(a+b)2
4
,解得a+b≥4,故a+b的最小值為4,故②錯誤;
由函數(shù)f(x)為定義在R上的奇函數(shù),故f(0)=0,又由f(x+2)=-f(x),故f(6)=f(4)=f(2)=f(0)=0,故③正確;
由隨機(jī)變量ζ服從正態(tài)分布N(1,σ2),P(ζ≤5)=0.81,則P(ζ≤-3)=P(ζ≥5)=1-0.81=0.19,故④正確;
故答案為:①③④
點(diǎn)評:本題利用命題的真假判斷與應(yīng)用為載體,考查了全稱命題的否定,基本不等式,函數(shù)的性質(zhì),正態(tài)分布,熟練掌握各種基本知識點(diǎn)是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•臨沂一模)函數(shù)f(x)=ln
x
x-1
+x
1
2
的定義域為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•臨沂一模)定義在R上的偶函數(shù)f(x)對任意的x∈R有f(1+x)=f(1-x),且當(dāng)x∈[2,3]時,f(x)=-x2+6x-9.若函數(shù)y=f(x)-logax在(0,+∞)上有四個零點(diǎn),則a的值為
1
4
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•臨沂一模)如圖所示,在邊長為l的正方形OABC中任取一點(diǎn)P,則點(diǎn)P恰好取自陰影部分的概率為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•臨沂一模)已知實數(shù)x,y滿足不等式組
x-y+2≥0
x+y-4≥0
2x-y-5≤0
,若目標(biāo)函數(shù)z=y-ax取得最大值時的唯一最優(yōu)解是(1,3),則實數(shù)a的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•臨沂一模)如圖,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右頂點(diǎn)為A、B,離心率為
3
2
,直線x-y+l=0經(jīng)過橢圓C的上頂點(diǎn),點(diǎn)S是橢圓C上位于x軸上方的動點(diǎn),直線AS,BS與直線l:x=-
10
3
分別交于M,N兩點(diǎn).
(I)求橢圓C的方程;
(Ⅱ)求線段MN長度的最小值;
(Ⅲ)當(dāng)線段MN長度最小時,在橢圓C上是否存在這樣的點(diǎn)P,使得△PAS的面積為l?若存在,確定點(diǎn)P的個數(shù);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案