下列函數(shù)f(x)中,滿足“對任意的x1,x2∈(0,+∞)時,均有(x1-x2)[f(x1)-f(x2)]>0”的是( 。
A、f(x)=
1
2
B、f(x)=x2-4x+4
C、f(x)=2x
D、f(x)=log 
1
2
x
考點:函數(shù)單調(diào)性的性質(zhì)
專題:函數(shù)的性質(zhì)及應用
分析:利用函數(shù)的單調(diào)性的定義結合基本初等函數(shù)的性質(zhì)即可得出結論.
解答: 解:∵函數(shù)f(x)中,滿足“對任意的x1,x2∈(0,+∞)時,均有(x1-x2)[f(x1)-f(x2)]>0”
∴x1-x2與f(x1)-f(x2)的值的正負號相同,即有
f(x1)-f(x2)
x1-x2
>0,
∴函數(shù)f(x)在(0,+∞)上單調(diào)遞增,因此可得只有函數(shù)f(x)=2x符合,故C正確;
對于A為常函數(shù),故錯誤;對于B為二次函數(shù)在(0,+∞)不是單調(diào)函數(shù),故錯誤;
對于D為對數(shù)函數(shù)是(0,+∞)的遞減函數(shù),故錯誤.
故選C.
點評:考查學生對函數(shù)單調(diào)性的定義及基本初等函數(shù)的性質(zhì)的掌握運用能力,屬基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

O為△ABC的外心,|
AB
|=2,|
AC
|=4,設
AO
=x
AB
+y
AC
,若x+4y=2,則|
AO
|的值為( 。
A、2
B、2
2
C、4
D、6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合A={x||x-1|≤2},B={x|y
1
1-2x
},則A∩∁RB=( 。
A、(-1,0)
B、(0,3)
C、[-1,0]
D、[0,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

π
2
-
π
4
|2cos2x-1|dx=(  )
A、
3
2
B、
1
2
C、3
D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在復平面內(nèi),復數(shù)z=(1+2i)2對應的點位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(1,1),
b
=(-2,3),若k
a
-
b
a
垂直,則實數(shù)k=( 。
A、
1
2
B、-
1
2
C、
5
2
D、-
5
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C:x2+y2+6x+8y+21=0,拋物線y2=8x的準線為l,設拋物線上任意一點P到直線l的距離為m,則m+|PC|的最小值為( 。
A、5
B、
41
C、
41
-2
D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α為銳角,sin(α+
π
4
)=
2
10
,則sinα的值是(  )
A、
3
5
B、
7
2
10
C、-
2
10
D、
4
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=axn+1+bxn(x>0),n為正整數(shù),a,b均為常數(shù),曲線y=f(x)在(1,f(1))處的切線方程為x+y-1=0.
(Ⅰ)求a、b值;
(Ⅱ)求函數(shù)f(x)的最大值;
(Ⅲ)證明:對任意的x∈(0,+∞)都有nf(x)<
1
e
.(e為自然對數(shù)的底)

查看答案和解析>>

同步練習冊答案