【題目】設(shè)數(shù)列的前項(xiàng)和為,對任意,點(diǎn)都在函數(shù)的圖象上.

(1),歸納數(shù)列的通項(xiàng)公式(不必證明).

(2)將數(shù)列依次按項(xiàng)、項(xiàng)、項(xiàng)、項(xiàng)、項(xiàng)循環(huán)地分為,,,各個(gè)括號內(nèi)各數(shù)之和,設(shè)由這些和按原來括號的前后順序構(gòu)成的數(shù)列為,求的值.

(3)設(shè)為數(shù)列的前項(xiàng)積,若不等式對一切都成立,其中,求的取值范圍.

【答案】1,, 23012 3

【解析】

1)求得,分別令,2,3,進(jìn)而歸納出數(shù)列的通項(xiàng)公式;

2)寫出幾個(gè)循環(huán)數(shù),可得每一次循環(huán)記為一組,由每一個(gè)循環(huán)含有5個(gè)括號,故是第20組中第5個(gè)括號內(nèi)的數(shù)之和,每一個(gè)循環(huán)中含有15個(gè)數(shù),20個(gè)循環(huán)具有300個(gè)數(shù),計(jì)算可得所求和;

3)由題意可得原不等式即為對一切都成立,

設(shè),則只需,判斷數(shù)列的單調(diào)性,可得最大值,解不等式即可得到所求的范圍.

因?yàn)辄c(diǎn)在函數(shù)的圖象上,故

所以

,得,所以;

,得,所以;

,得,所以;

由此猜想:.

因?yàn)?/span>,所以數(shù)列依次按項(xiàng)、項(xiàng)、項(xiàng)、項(xiàng)、項(xiàng)循環(huán)地分為,,

每一次循環(huán)記為一組.由于每一個(gè)循環(huán)含有個(gè)括號,故是第組中第個(gè)括號內(nèi)各數(shù)之和,每個(gè)循環(huán)中有個(gè)數(shù),個(gè)循環(huán)共有個(gè)數(shù).

,所以.

3)因?yàn)?/span>

所以

對一切都成立,

就是,則只需即可

由于,所以

是單調(diào)遞減,

于是解得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐中,,,點(diǎn),分別是棱,的中點(diǎn),點(diǎn)的重心.

1)證明:平面;

2)若與平面所成的角為,且,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦距為4,且過點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)為橢圓上一點(diǎn),過點(diǎn)軸的垂線,垂足為,取點(diǎn),連接,過點(diǎn)的垂線交軸于點(diǎn),點(diǎn)是點(diǎn)關(guān)于軸的對稱點(diǎn),作直線,問這樣作出的直線是否與橢圓一定有唯一的公共點(diǎn)?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長均相等的四棱錐, 為底面正方形的中心, ,分別為側(cè)棱,的中點(diǎn),有下列結(jié)論正確的有:( )

A.∥平面B.平面∥平面

C.直線與直線所成角的大小為D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動圓在圓外部且與圓相切,同時(shí)還在圓內(nèi)部與圓相切.

1)求動圓圓心的軌跡方程;

2)記(1)中求出的軌跡為,軸的兩個(gè)交點(diǎn)分別為、,上異于、的動點(diǎn),又直線軸交于點(diǎn),直線、分別交直線、兩點(diǎn),求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列的前項(xiàng)和為,等比數(shù)列的前項(xiàng)和為,且

1)設(shè),求數(shù)列的通項(xiàng)公式;

2)在(1)的條件下,且,求滿足的所有正整數(shù);

3)若存在正整數(shù),且,試比較的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn,等比數(shù)列{bn}的前n項(xiàng)和為Tn,a1=﹣1,b1=1,a2+b2=2.

(1)若a3+b3=5,求{bn}的通項(xiàng)公式;

(2)若T3=21,求S3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:函數(shù)fx)=2lnxax2+3x,其中aR

1)若f1)=2,求函數(shù)fx)的最大值;

2)若a=﹣1,正實(shí)數(shù)x1x2滿足fx1+fx2)=0,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD是邊長為1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E為MC的中點(diǎn),則下列結(jié)論不正確的是( 。

A. 平面平面ABN B.

C. 平面平面AMN D. 平面平面AMN

查看答案和解析>>

同步練習(xí)冊答案