【題目】設正項數(shù)列的前n項和為,已知
(1)求證:數(shù)列是等差數(shù)列,并求其通項公式
(2)設數(shù)列的前n項和為,且,若對任意都成立,求實數(shù)的取值范圍.
【答案】(1)見證明;(2)
【解析】
(1)首先求出,利用與作差,化簡即可得到為常數(shù),進而可證明數(shù)列為等差數(shù)列,其首項為2,公差2,利用等差數(shù)列通項公式求出;
(2)結合(1)可得,利用裂項相消,即可求出數(shù)列的前項和為,代入,分離參數(shù)即可得到,分別為奇數(shù)和偶數(shù)是的范圍即可.
(1)證明:∵,且,
當時,,解得.
當時,有即,即.于是,
即.
∵,∴為常數(shù)
∴數(shù)列是為首項,為公差的等差數(shù)列,∴.
(2)由(1)可得: ,
∴
,即對任意都成立,
①當為偶數(shù)時,恒成立,
令,
,
在上為增函數(shù),
②當為奇數(shù)時,恒成立,又,在為增函數(shù),
∴由①②可知:
綜上所述的取值范圍為:
科目:高中數(shù)學 來源: 題型:
【題目】(選修4-4 坐標系與參數(shù)方程) 以平面直角坐標系的原點為極點, 軸的正半軸為極軸建立極坐標系,設曲線C的參數(shù)方程為 (是參數(shù)),直線的極坐標方程為.
(1)求直線的直角坐標方程和曲線C的普通方程;
(2)設點P為曲線C上任意一點,求點P到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了了解我校高2017級本部和大學城校區(qū)的學生是否愿意參加自主招生培訓的情況,對全年級2000名高三學生進行了問卷調(diào)查,統(tǒng)計結果如下表:
校區(qū) | 愿意參加 | 不愿意參加 |
重慶一中本部校區(qū) | 220 | 980 |
重慶一中大學城校區(qū) | 80 | 720 |
(1)若從愿意參加自主招生培訓的同學中按分層抽樣的方法抽取15人,則大學城校區(qū)應抽取幾人;
(2)現(xiàn)對愿意參加自主招生的同學組織摸底考試,考試題共有5道題,每題20分,對于這5道題,考生“如花姐”完全會答的有3題,不完全會的有2道,不完全會的每道題她得分的概率滿足:,假設解答各題之間沒有影響,
①對于一道不完全會的題,求“如花姐”得分的均值;
②試求“如花姐”在本次摸底考試中總得分的數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(5分)《九章算術》“竹九節(jié)”問題:現(xiàn)有一根9節(jié)的竹子,自上而下各節(jié)的容積成等差數(shù)列,上面4節(jié)的容積共3升,下面3節(jié)的容積共4升,則第五節(jié)的容積為( )
A. 1升 B. 升 C. 升 D. 升
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】直角梯形ABCD如圖(1)所示,其中,,過點B作,垂足為M,得到面積為4的正方形ABMD,現(xiàn)沿BM進行翻折,得到如圖(2)所示的四棱柱C-ABMD.
(1)求證:平面平面CDM;
(2)若,平面CBM與平面CAD所成銳二面角的余弦值為,求CM的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知四棱錐中,底面是正方形,平面,,是的中點.
(1)求證:平面平面;
(2)求二面角的大小;
(3)試判斷所在直線與平面是否平行,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正項數(shù)列的前項和為,若,.
(1)證明:當時,;
(2)求數(shù)列的通項公式;
(3)設,求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解貴州省某州2020屆高三理科生的化學成績的情況,該州教育局組織高三理科生進行了摸底考試,現(xiàn)從參加考試的學生中隨機抽取了100名理科生,,將他們的化學成績(滿分為100分)分為6組,得到如圖所示的頻率分布直方圖.
(1)求a的值;
(2)記A表示事件“從參加考試的所有理科生中隨機抽取一名學生,該學生的化學成績不低于70分”,試估計事件A發(fā)生的概率;
(3)在抽取的100名理科生中,采用分層抽樣的方法從成績在內(nèi)的學生中抽取10名,再從這10名學生中隨機抽取4名,記這4名理科生成績在內(nèi)的人數(shù)為X,求X的分布列與數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com