對于集合A={(x,y)|x2+y2=1},B={(x,y)|
x
a
+
y
b
=1,a>0,b>0},如果A∩B=∅,則
a2+b2
-ab的值為( 。
A、正B、負C、0D、不能確定
考點:交集及其運算
專題:集合
分析:集合A表示的圖形為圓,集合B表示的圖形為直線,由兩集合的交集為空集得到直線與圓沒有公共點,即圓心到直線的距離大于半徑,即可求出所求式子的正負.
解答: 解:集合A表示的圖形是圓x2+y2=1;集合B表示的圖形是直線bx+ay-ab=0(a>0,b>0),
由A∩B=∅可知,直線和圓沒有公共點,
從而有
|ab|
a2+b2
>1,即
a2+b2
<ab,
a2+b2
-ab<0,
a2+b2
-ab的值為負.
故選:B.
點評:此題考查了交集及其運算,熟練掌握交集的定義是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

通過觀察所給兩等式的規(guī)律:
sin30°+sin60°
cos30°+cos60°
=1
sin30°+sin90°
cos30°+cos90°
=
3

請你寫出一個一般性的命題:
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

13
24
)(
-11
04
)結果是( 。
A、(
-113
-218
B、(
132
18-2
C、(
-218
213
D、(
18-2
132

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x>0,y>0,x+y-x2y2=4,則
1
x
+
1
y
的最小值等于(  )
A、2
B、4
C、
1
2
D、
1
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正方體ABCD-A′B′C′D′中,向量
AB
BC
的夾角是( 。
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

sin30°=( 。
A、
1
2
B、
3
2
C、-
1
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若{an}為等差數(shù)列,Sn是其前n項和,且S13=
26π
3
,則tana7的值為( 。
A、
3
B、-
3
C、±
3
D、-
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

邊長為2的正方形的直觀圖的周長為(  )
A、8B、12C、10D、6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面直角坐標系中,點O為原點,A(-3,-4),B(5,-12),若
OC
=
OA
+
OB
OD
=
OA
-
OB

(Ⅰ)求點C和點D的坐標;
(Ⅱ)求
OC
OD

查看答案和解析>>

同步練習冊答案