A. | $\frac{16}{9}$ | B. | $\frac{25}{9}$ | C. | $\frac{25}{16}$ | D. | $\frac{5}{3}$ |
分析 利用勾股定理求出AB=5,利用切割線定理求出BD=$\frac{16}{5}$,由此能求出$\frac{BD}{DA}$.
解答 解:∵Rt△ABC的兩條直角邊AC,BC的長分別為3cm,4cm,
∴AB=$\sqrt{9+16}$=5(cm)
∵以AC為直徑的圓與AB交于點D,
∴BC2=BD•AB,∴BD=$\frac{16}{5}$,
∴DA=5-$\frac{16}{5}$=$\frac{9}{5}$,
∴$\frac{BD}{DA}$=$\frac{16}{9}$.
故選A.
點評 本題考查兩條線段的比值的求法,是中檔題,解題時要認(rèn)真審題,注意切割線定理的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,2] | B. | (-∞,2) | C. | (4,+∞) | D. | [4,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3個 | B. | 2個 | C. | 0個 | D. | 4個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 2個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{7\sqrt{2}}{10}$ | B. | -$\frac{\sqrt{2}}{10}$ | C. | $\frac{\sqrt{2}}{10}$ | D. | $\frac{7\sqrt{2}}{10}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com