【題目】已知在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為為參數(shù),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為

1求圓C的普通方程和直線l的直角坐標(biāo)方程;

2設(shè)M是直線l上任意一點,過M做圓C切線,切點為A、B,求四邊形AMBC面積的最小值.

【答案】(1)圓的普通方程為.直線直角坐標(biāo)方程 (2)

【解析】

1)結(jié)合,消去參數(shù),得到圓C的普通方程;結(jié)合

,代入,得到直線l的直角坐標(biāo)方程。(2)計算,圓心C到該直線的距離,計算四邊形AMBC的面積,計算最小值,即可。

(1)由

即圓的普通方程為.

,

,由得直線直角坐標(biāo)方程

(2)圓心到直線:的距離為

是直線上任意一點,則

四邊形面積……9分

四邊形面積的最小值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某次文藝匯演為,要將AB,C,DE,F這六個不同節(jié)目編排成節(jié)目單,如下表:

序號

1

2

3

4

5

6

節(jié)目

如果A,B兩個節(jié)目要相鄰,且都不排在第3號位置,那么節(jié)目單上不同的排序方式有

A. 192種B. 144種C. 96種D. 72種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以平面直角坐標(biāo)系的原點為極點,軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位,直線的參數(shù)方程為是參數(shù)),圓的極坐標(biāo)方程為.

(Ⅰ)求直線的普通方程與圓的直角坐標(biāo)方程;

(Ⅱ)設(shè)曲線與直線的交于兩點,若點的直角坐標(biāo)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù).

(1)若,求曲線在點處的切線方程;

(2)若函數(shù)有且只有一個零點,求實數(shù)的取值范圍;

(3)若函數(shù)恒成立,求實數(shù)的取值范圍.(是自然對數(shù)的底數(shù),)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為提倡節(jié)能減排,同時減輕居民負(fù)擔(dān),廣州市積極推進(jìn)一戶一表工程非一戶一表用戶電費采用合表電價收費標(biāo)準(zhǔn):一戶一表用戶電費采用階梯電價收取,其11月到次年4月起執(zhí)行非夏季標(biāo)準(zhǔn)如下:

第一檔

第二檔

第三檔

每戶每月用電量單位:度

電價單位:元

例如:某用戶11月用電410度,采用合表電價收費標(biāo)準(zhǔn),應(yīng)交電費元,若采用階梯電價收費標(biāo)準(zhǔn),應(yīng)交電費元.

為調(diào)查階梯電價是否能到減輕居民負(fù)擔(dān)的效果,隨機調(diào)查了該市100戶的11月用電量,工作人員已經(jīng)將90戶的月用電量填在下面的頻率分布表中,最后10戶的月用電量單位:度為:88268、370、140、440、420520、320、230380

1)在答題卡中完成頻率分布表,并繪制頻率分布直方圖;

根據(jù)已有信息,試估計全市住戶11月的平均用電量同一組數(shù)據(jù)用該區(qū)間的中點值作代表

設(shè)某用戶11月用電量為x,按照合表電價收費標(biāo)準(zhǔn)應(yīng)交元,按照階梯電價收費標(biāo)準(zhǔn)應(yīng)交元,請用x表示,并求當(dāng)時,x的最大值,同時根據(jù)頻率分布直方圖估計階梯電價能否給不低于的用戶帶來實惠?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的一個頂點為,且過拋物線的焦點F

(1)求橢圓C的方程及離心率;

(2)設(shè)點Q是橢圓C上一動點,試問直線上是否存在點P,使得四邊形PFQB是平行四邊形?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為,其中為參數(shù),在以坐標(biāo)原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,點的極坐標(biāo)為,直線的極坐標(biāo)方程為.

(1)求直線的直角坐標(biāo)方程與曲線的普通方程;

(2)若是曲線上的動點,為線段的中點.求點到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若,求曲線在點處的切線方程;

(Ⅱ)若,判斷函數(shù)的零點個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將正整數(shù)1,2,3,n,排成數(shù)表如表所示,即第一行3個數(shù),第二行6個數(shù),且后一行比前一行多3個數(shù),若第i行,第j列的數(shù)可用表示,則100可表示為______

1

2

3

4

5

6

7

8

1

1

2

3

2

9

8

7

6

5

4

3

10/p>

11

12

13

14

15

16

17

查看答案和解析>>

同步練習(xí)冊答案