【題目】某電視臺(tái)在一次對(duì)收看文藝節(jié)目和新聞節(jié)目觀眾的抽樣調(diào)查中,隨機(jī)抽取了100名電視觀眾,相關(guān)的數(shù)據(jù)如下表所示:

文藝節(jié)目

新聞節(jié)目

總計(jì)

20至40歲

42

16

58

大于40歲

18

24

42

總計(jì)

60

40

100

(1)用分層抽樣方法在收看新聞節(jié)目的觀眾中隨機(jī)抽取5名觀眾,則大于40歲的觀眾應(yīng)該抽取幾名?

(2)由表中數(shù)據(jù)分析,收看新聞節(jié)目的觀眾是否與年齡有關(guān)?

(3)在第(1)中抽取的5名觀眾中任取2名,求恰有1名觀眾的年齡為20至40歲的概率.

(提示:,其中.當(dāng)時(shí),有的把握判定兩個(gè)變量有關(guān)聯(lián);當(dāng)時(shí),有的把握判定兩個(gè)變量有關(guān)聯(lián);當(dāng)時(shí),有的把握判定兩個(gè)變量有關(guān)聯(lián).)

【答案】(1)3人; (2)有的把握說收看新聞節(jié)目的觀眾與其年齡有關(guān); (3).

【解析】

(1)先根據(jù)列聯(lián)表得到收看新聞節(jié)目的觀眾中大于40歲的觀眾的頻率為,從而可求得應(yīng)抽取的人數(shù).

(2)利用公式計(jì)算出后再利用預(yù)測(cè)值表中的數(shù)據(jù)可得有的把握說收看新聞節(jié)目的觀眾與其年齡有關(guān).

(3)利用枚舉法可得基本事件的總數(shù)和隨機(jī)事件中含有的基本事件的總數(shù),再利用古典概型的概率公式可求概率.

(1)應(yīng)抽取大于40歲的觀眾的人數(shù)為(人).

(2)∵,

∴有的把握說收看新聞節(jié)目的觀眾與其年齡有關(guān).

(3)記為“恰有1名觀眾的年齡為20至40歲”,

由(1)知,抽取的5名觀眾中,有2名觀眾年齡處于20至40歲,設(shè)為甲、乙;3名觀眾的年齡大于40歲,設(shè)為,,,則從5名觀眾任取2名的基本事件有:(甲,乙),(甲,),(甲,),(甲,),(乙,),(乙,),(乙,),,共10個(gè),其中“恰有1名觀眾的年齡為20至40歲”的基本事件有6個(gè).

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知pq

1)若pq充分不必要條件,求實(shí)數(shù)的取值范圍;

2)若p”q”的充分不必要條件,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某輪船公司的一艘輪船每小時(shí)花費(fèi)的燃料費(fèi)與輪船航行速度的平方成正比,比例系數(shù)為輪船的最大速度為15海里小時(shí)當(dāng)船速為10海里小時(shí),它的燃料費(fèi)是每小時(shí)96元,其余航行運(yùn)作費(fèi)用(不論速度如何)總計(jì)是每小時(shí)150元假定運(yùn)行過程中輪船以速度v勻速航行.

k的值;

求該輪船航行100海里的總費(fèi)用燃料費(fèi)航行運(yùn)作費(fèi)用的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l過點(diǎn)P(-1,2)且與兩坐標(biāo)軸的正半軸所圍成的三角形面積等于

(1)求直線l的方程.

(2)求圓心在直線l上且經(jīng)過點(diǎn)M(2,1),N(4,-1)的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】微信運(yùn)動(dòng)是手機(jī)推出的多款健康運(yùn)動(dòng)軟件中的一款,楊老師的微信朋友圈內(nèi)有位好友參與了微信運(yùn)動(dòng),他隨機(jī)選取了位微信好友(女人,男人),統(tǒng)計(jì)其在某一天的走路步數(shù).其中,女性好友的走路步數(shù)數(shù)據(jù)記錄如下:

5860 8520 7326 6798 7325 8430 3216 7453 11754 9860

8753 6450 7290 4850 10223 9763 7988 9176 6421 5980

男性好友走路的步數(shù)情況可分為五個(gè)類別: )(說明:“表示大于等于,小于等于.下同), ), ), ), 步及以),三種類別人數(shù)比例為,將統(tǒng)計(jì)結(jié)果繪制如圖所示的條形圖.

若某人一天的走路步數(shù)超過步被系統(tǒng)認(rèn)定為衛(wèi)健型",否則被系統(tǒng)認(rèn)定為進(jìn)步型”.

1)若以楊老師選取的好友當(dāng)天行走步數(shù)的頻率分布來估計(jì)所有微信好友每日走路步數(shù)的概率分布,請(qǐng)估計(jì)楊老師的微信好友圈里參與微信運(yùn)動(dòng)名好友中,每天走路步數(shù)在步的人數(shù);

2)請(qǐng)根據(jù)選取的樣本數(shù)據(jù)完成下面的列聯(lián)表并據(jù)此判斷能否有以上的把握認(rèn)定認(rèn)定類型性別有關(guān)?

p>

衛(wèi)健型

進(jìn)步型

總計(jì)

20

20

總計(jì)

40

3)若從楊老師當(dāng)天選取的步數(shù)大于10000的好友中按男女比例分層選取人進(jìn)行身體狀況調(diào)查,然后再?gòu)倪@位好友中選取人進(jìn)行訪談,求至少有一位女性好友的概率.

附:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面上動(dòng)點(diǎn)到點(diǎn)的距離與到直線的距離之比為,記動(dòng)點(diǎn)的軌跡為曲線.

1)求曲線的方程;

2)設(shè)是曲線上的動(dòng)點(diǎn),直線的方程為.

①設(shè)直線與圓交于不同兩點(diǎn) ,求的取值范圍;

②求與動(dòng)直線恒相切的定橢圓的方程;并探究:若是曲線 上的動(dòng)點(diǎn),是否存在直線 恒相切的定曲線?若存在,直接寫出曲線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角三角形中,,點(diǎn)分別在邊上(不重合),將沿翻折,變?yōu)?/span>,使頂點(diǎn)落在邊上(不重合),設(shè).

1)若,求線段的長(zhǎng)度;

2)用表示線段的長(zhǎng)度;

3)求線段長(zhǎng)度的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】北京時(shí)間3月15日下午,谷歌圍棋人工智能與韓國(guó)棋手李世石進(jìn)行最后一輪較量, 獲得本場(chǎng)比賽勝利,最終人機(jī)大戰(zhàn)總比分定格.人機(jī)大戰(zhàn)也引發(fā)全民對(duì)圍棋的關(guān)注,某學(xué)校社團(tuán)為調(diào)查學(xué)生學(xué)習(xí)圍棋的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查.根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均學(xué)習(xí)圍棋時(shí)間的頻率分布直方圖(如圖所示),將日均學(xué)習(xí)圍棋時(shí)間不低于40分鐘的學(xué)生稱為“圍棋迷”.

(Ⅰ)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否有的把握認(rèn)為“圍棋迷”與性別有關(guān)?

非圍棋迷

圍棋迷

合計(jì)

10

55

合計(jì)

(Ⅱ)將上述調(diào)查所得到的頻率視為概率,現(xiàn)在從該地區(qū)大量學(xué)生中,采用隨機(jī)抽樣方法每次抽取1名學(xué)生,抽取3次,記被抽取的3名淡定生中的“圍棋迷”人數(shù)為。若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列,期望和方差.

附: ,其中.

0.05

0.01

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

點(diǎn)P是曲線C1:(x-2)2+y2=4上的動(dòng)點(diǎn),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸

建立極坐標(biāo)系,將點(diǎn)P繞極點(diǎn)O逆時(shí)針90得到點(diǎn)Q,設(shè)點(diǎn)Q的軌跡為曲線C2.

求曲線C1,C2的極坐標(biāo)方程;

射線= (>0)與曲線C1,C2分別交于A,B兩點(diǎn),定點(diǎn)M(2,0),MAB的面積

查看答案和解析>>

同步練習(xí)冊(cè)答案