考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用,導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)求出a=1時(shí)函數(shù)f(x)的導(dǎo)數(shù),求出切點(diǎn)和切線的斜率,由點(diǎn)斜式方程,即可得到切線方程;
(Ⅱ)對(duì)a討論:①當(dāng)a=-2,②-2<a<0時(shí),③當(dāng)a<-2時(shí),令導(dǎo)數(shù)大于0,得增區(qū)間,令導(dǎo)數(shù)小于0,得減區(qū)間;
(Ⅲ)假設(shè)存在這樣的實(shí)數(shù)a滿足條件,不妨設(shè)x
1<x
2.條件轉(zhuǎn)化為f(x
2)-ax
2>f(x
1)-ax
1成立,令g(x)=f(x)-ax=
x
2-2aln x-2x,則函數(shù)g(x)在(0,+∞)上單調(diào)遞增,則g′(x)=x-
-2≥0,即2a≤x
2-2x=(x-1)
2-1在(0,+∞)上恒成立.求出不等式右邊的最小值,令2a不大于它即可.
解答:
解:(Ⅰ)函數(shù)f(x)=
x
2-2alnx+(a-2)x,
f′(x)=x-
+(a-2)=
(x>0)
當(dāng)a=1時(shí),f′(x)=
,f′(1)=-2,
則所求的切線方程為:y-f(1)=-2(x-1),
即4x+2y-3=0;
(Ⅱ)①當(dāng)-a=2,即a=-2時(shí),
f′(x)=
≥0,f(x)在(0,+∞)上單調(diào)遞增;
②當(dāng)-a<2,即-2<a<0時(shí),
由0<x<-a,或x>2時(shí),f′(x)>0,-a<x<2時(shí),f′(x)<0.
則f(x)在(0,-a),(2,+∞)單調(diào)遞增,在(-a,2)上單調(diào)遞減;
③當(dāng)-a>2,即a<-2時(shí),
由0<x<2或x>-a時(shí),f′(x)>0;2<x<-a時(shí),f′(x)<0,
f(x)在(0,2),(-a,+∞)上單調(diào)遞增,在(2,-a)上單調(diào)遞減;
(Ⅲ)假設(shè)存在這樣的實(shí)數(shù)a滿足條件,不妨設(shè)x
1<x
2.
由
>a知f(x
2)-ax
2>f(x
1)-ax
1成立,
令g(x)=f(x)-ax=
x
2-2aln x-2x,
則函數(shù)g(x)在(0,+∞)上單調(diào)遞增,
則g′(x)=x-
-2≥0,
即2a≤x
2-2x=(x-1)
2-1在(0,+∞)上恒成立.,則a≤-
,
故存在這樣的實(shí)數(shù)a滿足題意,其范圍為(-∞,-
].
點(diǎn)評(píng):本題考查導(dǎo)數(shù)的運(yùn)用:求切線方程和單調(diào)區(qū)間,同時(shí)考查構(gòu)造函數(shù),運(yùn)用導(dǎo)數(shù)求單調(diào)性和最值,考查分類討論和參數(shù)分離的思想方法,屬于中檔題.