已知正項數(shù)列{an},其前n項和Sn滿足6Sn=an2+3an+2,且a1,a3,a11成等比數(shù)列,則數(shù)列{an}的通項為________.
an=3n-1
分析:根據(jù)所給的含有前n項和與項的關(guān)系式,仿寫一個式子,兩個式子相減,得到兩項之間的關(guān)系,得到數(shù)列是一個等差數(shù)列,求出首項,根據(jù)三項成等比數(shù)列,去掉不合題意的首項,得到通項.
解答:∵6Sn=an2+3an+2,①
∴6Sn+1=an+12+3an+1+2,②
②-①得到6an+1=an+12+3an+1-an2-3an
∴3(an+1+an)=(an+1-an)(an+1+an)
∵正項數(shù)列{an},
∴an+1-an=3或an+1+an=0
∴數(shù)列是一個公差為3的等差數(shù)列,
∵6a1=a12+3a1+2
∴a1=1或2,
∵a1,a3,a11成等比數(shù)列
∴當a1=1時,1,7,31不成等比數(shù)列,
首項等于2時,2,8,32成等比數(shù)列,
∴首項等于2,
∴數(shù)列的通項是an=3n-1
故答案為:an=3n-1
點評:本題考查求數(shù)列的通項,本題解題的關(guān)鍵是仿寫一個式子,兩個式子相減得到只含有通項的式子,在仿寫的時候注意仿寫一個n+1的式子,不然要討論n的取值.