精英家教網 > 高中數學 > 題目詳情
本題設有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分,作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
設矩陣 M=
a0
0b
(其中a>0,b>0).
(I)若a=2,b=3,求矩陣M的逆矩陣M-1;
(II)若曲線C:x2+y2=1在矩陣M所對應的線性變換作用下得到曲線C’:
x2
4
+y2=1
,求a,b的值.
(2)(本小題滿分7分)選修4-4:坐標系與參數方程
在直接坐標系xOy中,直線l的方程為x-y+4=0,曲線C的參數方程為
x=
3
cos∂
y=sin∂
(∂為參數)

(I)已知在極坐標(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標為(4,
π
2
),判斷點P與直線l的位置關系;
(II)設點Q是曲線C上的一個動點,求它到直線l的距離的最小值.
(3)(本小題滿分7分)選修4-5:不等式選講
設不等式|2x-1|<1的解集為M.
(I)求集合M;
(II)若a,b∈M,試比較ab+1與a+b的大小.
(1)(I)∵M=
a0
0b

M-1=
.
b
ab-0
0
ab-0
0
ab-0
a
ab-0
.

將a=2,b=3代入即得:M-1=
.
3
6
0
6
0
6
2
6
.
=
.
1
2
0
0
1
3
.

(II)設出曲線C:x2+y2=1任意一點為(x0,y0)經矩陣M所對應的線性變換作用下得到的點為(x,y),
∵M(x0,y0)=(x,y)
ax0=x
by0=y

將之代入
x2
4
+y2=1
得:
a2
x02
4
+b2
y20
=1

a2
4
=1
b2=1

∵a>0,b>0
a=2
b=1

(2)(I)解∵P的極坐標為(4,
π
2
),
x=ρcosθ
y=ρsinθ

∴P的直角坐標為(0,4)
∵直線l的方程為x-y+4=0
∴(0,4)在直線l上
(II)∵曲線C的參數方程為
x=
3
cos∂  ①
y=sin∂  ②
(∂為參數)
,直線l的方程為x-y+4=0
設曲線C的到直線l的距離為d
則d=
|
3
cosα-sinα+4|
12+12
=
|4+2sin(
π
3
-α)|
2

∵2sin(
π
3
)∈[-2,2]
∴d的最小值為
2

(3)(I)∵|2x-1|<1
∴-1<2x-1<1
即0<x<1
即M為{x|0<x<1}
(II∵a,b∈M
∴a-1<0.b-1<0
∴(b-1)(a-1)>0
∴(ab+1)-(a+b)=a(b-1)+(1-b)=(b-1)(a-1)>0
即(ab+1)>(a+b)
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

本題設有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分,作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
設矩陣 M=
a0
0b
(其中a>0,b>0).
(Ⅰ)若a=2,b=3,求矩陣M的逆矩陣M-1;
(Ⅱ)若曲線C:x2+y2=1在矩陣M所對應的線性變換作用下得到曲線C′:
x2
4
+y2=1
,求a,b的值.
(2)(本小題滿分7分)選修4-4:坐標系與參數方程
在直接坐標系xOy中,直線l的方程為x-y+4=0,曲線C的參數方程為
x=
3
cos∂
y=sin∂
(∂為參數)

(Ⅰ)已知在極坐標(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標為(4,
π
2
),判斷點P與直線l的位置關系;
(Ⅱ)設點Q是曲線C上的一個動點,求它到直線l的距離的最小值.
(3)(本小題滿分7分)選修4-5:不等式選講
設不等式|2x-1|<1的解集為M.
(Ⅰ)求集合M;
(Ⅱ)若a,b∈M,試比較ab+1與a+b的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

本題設有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題作答,滿分14分
(1)選修4-2:矩陣與變換
變換T是將平面上每個點M(x,y)的橫坐標乘2,縱坐標乘4,變到點M′(2x,4y).
(Ⅰ)求變換T的矩陣;
(Ⅱ)圓C:x2+y2=1在變換T的作用下變成了什么圖形?
(2)選修4-4:坐標系與參數方程
已知極點與原點重合,極軸與x軸的正半軸重合.若曲線C1的極坐標方程為:5ρ2-3ρ2cos2θ-8=0,直線?的參數方程為:
x=1-
3
t
y=t
(t為參數).
(Ⅰ)求曲線C1的直角坐標方程;
(Ⅱ)直線?上有一定點P(1,0),曲線C1與?交于M,N兩點,求|PM|.|PN|的值.
(3)選修4-5:不等式選講
已知a,b,c為實數,且a+b+c+2-2m=0,a2+
1
4
b2+
1
9
c2
+m-1=0.
(Ⅰ)求證:a2+
1
4
b2+
1
9
c2
(a+b+c)2
14
;
(Ⅱ)求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年福建省高三第八次月考理科數學試卷 題型:解答題

本題設有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題做答,滿分14分

(1)(本小題滿分7分)選修4-2:矩陣與變換

變換是將平面上每個點的橫坐標乘,縱坐標乘,變到點.

(Ⅰ)求變換的矩陣;

(Ⅱ)圓在變換的作用下變成了什么圖形?

(2)(本小題滿分7分)選修4-4:坐標系與參數方程

已知極點與原點重合,極軸與x軸的正半軸重合.若曲線的極坐標方程為:,直線的參數方程為:為參數).

(Ⅰ)求曲線的直角坐標方程;

(Ⅱ)直線上有一定點,曲線交于M,N兩點,求的值.

(3)(本小題滿分7分)選修4-5:不等式選講

 已知為實數,且

(Ⅰ)求證:

(Ⅱ)求實數m的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2011年普通高中招生考試福建省高考理科數學 題型:解答題

本題設有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題做答,滿分14分,如果多做,則按所做的前兩題計分,做答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中。

(1)(本小題滿分7分)選修4-2:矩陣與變換

設矩陣 (其中a>0,b>0).

(I)若a=2,b=3,求矩陣M的逆矩陣M-1;

(II)若曲線C:x2+y2=1在矩陣M所對應的線性變換作用下得到曲線C’:,求a,b的值.

 

查看答案和解析>>

科目:高中數學 來源:2011年福建省高考數學試卷(理科)(解析版) 題型:解答題

本題設有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分,作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
設矩陣 (其中a>0,b>0).
(I)若a=2,b=3,求矩陣M的逆矩陣M-1
(II)若曲線C:x2+y2=1在矩陣M所對應的線性變換作用下得到曲線C’:,求a,b的值.
(2)(本小題滿分7分)選修4-4:坐標系與參數方程
在直接坐標系xOy中,直線l的方程為x-y+4=0,曲線C的參數方程為
(I)已知在極坐標(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標為(4,),判斷點P與直線l的位置關系;
(II)設點Q是曲線C上的一個動點,求它到直線l的距離的最小值.
(3)(本小題滿分7分)選修4-5:不等式選講
設不等式|2x-1|<1的解集為M.
(I)求集合M;
(II)若a,b∈M,試比較ab+1與a+b的大。

查看答案和解析>>

同步練習冊答案