【題目】已知函數(shù)f(x)=|x+1|﹣|x|+a.
(1)若a=0,求不等式f(x)≥0的解集;
(2)若方程f(x)=x有三個(gè)不同的解,求實(shí)數(shù)a的取值范圍.
【答案】
(1)解:當(dāng)a=0時(shí), ,
所以當(dāng)x<﹣1時(shí),f(x)=﹣1<0,不合題意;
當(dāng)﹣1≤x<0時(shí),f(x)=2x+1≥0,解得 ;
當(dāng)x≥0時(shí),f(x)=1>0,符合題意.
綜上可得,f(x)≥0的解集為
(2)解:設(shè)u(x)=|x+1|﹣|x|,y=u(x)的圖象和y=x的圖象如圖所示.
易知y=u(x)的圖象向下平移1個(gè)單位以內(nèi)(不包括1個(gè)單位),與y=x的圖象始終有3個(gè)交點(diǎn),
從而﹣1<a<0.
所以實(shí)數(shù)a的取值范圍為(﹣1,0)
【解析】(1)若a=0,求得函數(shù)f(x)的解析式,根據(jù)解析式分別求得f(x)≥0的解集;(2)u(x)=|x+1|﹣|x|,做出y=u(x)和y=x的圖象,方程f(x)=x恰有三個(gè)不同的實(shí)根,轉(zhuǎn)化成y=u(x)與y=x的圖象始終有3個(gè)交點(diǎn),根據(jù)函數(shù)圖象即可求得實(shí)數(shù)a的取值范圍.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解絕對(duì)值不等式的解法的相關(guān)知識(shí),掌握含絕對(duì)值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對(duì)值的符號(hào).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x﹣klnx,(常數(shù)k>0).
(1)試確定函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對(duì)于任意x≥1,f(x)>0恒成立,試確定實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知公差不為0的等差數(shù)列{an}中,a1=2,且a2+1,a4+1,a8+1成等比數(shù)列.
(1)求數(shù)列{an}通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn= ,求適合方程b1b2+b2b3+…+bnbn+1= 的正整數(shù)n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[0, ]時(shí),函數(shù) y=f(x)的最小值為 ,試確定常數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量 =(cos ,﹣1), =( sin ,cos2 ),設(shè)函數(shù)f(x)= +1.
(1)若x∈[0, ],f(x)= ,求cosx的值;
(2)在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且滿足2bcosA≤2c﹣ a,求f(B)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)正整數(shù)n,有拋物線y2=2(2n﹣1)x,過(guò)P(2n,0)任作直線l交拋物線于An , Bn兩點(diǎn),設(shè)數(shù)列{an}中,a1=﹣4,且an= (其中n>1,n∈N),則數(shù)列{an}的前n項(xiàng)和Tn=( )
A.4n
B.﹣4n
C.2n(n+1)
D.﹣2n(n+1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,圓錐的軸截面為等腰直角△SAB,Q為底面圓周上一點(diǎn).
(1)若QB的中點(diǎn)為C,OH⊥SC,求證:OH⊥平面SBQ;
(2)如果∠AOQ=60°,QB=2,求此圓錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2016x+log2016( +x)﹣2016﹣x+2,則關(guān)于x的不等式f(3x+1)+f(x)>4的解集為( )
A.(﹣ ,+∞)
B.(﹣∞,﹣ )
C.(0,+∞)
D.(﹣∞,0)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C的兩個(gè)焦點(diǎn)分別為F1(﹣ ,0),F(xiàn)2( ,0),且橢圓C過(guò)點(diǎn)P(3,2).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)與直線OP平行的直線交橢圓C于A,B兩點(diǎn),求△PAB面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com