(本小題滿分13分)已知,
(1)判斷函數(shù)的奇偶性;
(2) 判斷函數(shù)的單調(diào)性,并證明;
(3)當函數(shù)的定義域為時,求使成立的實數(shù)的取值范圍.

(1)為奇函數(shù);(2)當時,上是增函數(shù);(3)。

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

設(shè)a∈R,函數(shù)f(x)=lnxax.
(1)討論函數(shù)f(x)的單調(diào)區(qū)間和極值;
(2)已知(e為自然對數(shù)的底數(shù))和x2是函數(shù)f(x)的兩個不同的零點,求a的值并證明:x2>e.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)函數(shù)是定義在上的奇函數(shù),且.
(1)求實數(shù)的值.(2)用定義證明上是增函數(shù);
(3)寫出的單調(diào)減區(qū)間,并判斷有無最大值或最小值?如有,寫出最大值或最小值(無需說明理由).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

定義在[-1,1]上的偶函數(shù)f(x),已知當x∈[0,1]時的解析式為 (a∈R).
(1)求f(x)在[-1,0]上的解析式;
(2)求f(x)在[0,1]上的最大值h(a).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)已知是一次函數(shù),且滿足:,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)的定義域是,且對任意不為零的實數(shù)x都滿足 =.已知當x>0時
(1)求當x<0時,的解析式  (2)解不等式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)已知函數(shù)是定義域為R的偶函數(shù),其圖像均在x軸的上方,對任意的,都有,且,又當時,為增函數(shù)。
(1)求的值;
(2)對于任意正整數(shù),不等式:恒成立,求實數(shù)的取值
范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本大題14分)
已知函數(shù)定義域為,且滿足.
(Ⅰ)求解析式及最小值;
(Ⅱ)求證:。        
(Ⅲ)設(shè)。求證:,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(I)判斷的奇偶性;
(Ⅱ)設(shè)函數(shù)在區(qū)間上的最小值為,求的表達式;
(Ⅲ)若,證明:方程有兩個不同的正數(shù)解.

查看答案和解析>>

同步練習冊答案