【題目】甲乙兩人參加某種選拔測試,在備選的10道題中,甲答對其中每道題的概率都是,乙能答對其中的8道題.規(guī)定每次考試都從備選的10道題中隨機(jī)抽出4道題進(jìn)行測試,只有選中的4個題目均答對才能入選;
(Ⅰ)求甲恰有2個題目答對的概率及甲答對題目數(shù)的數(shù)學(xué)期望與方差。
(Ⅱ)求乙答對的題目數(shù)X的分布列。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:極坐標(biāo)與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為: (t為參數(shù)),它與曲線C: 相交于A,B兩點.
(1)求|AB|的長;
(2)在以O(shè)為極點,x軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點P的極坐標(biāo)為,求點P到線段AB中點M的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知y=f(x)是定義在R上的奇函數(shù),且x<0時,f(x)=1+2x.
(1)求函數(shù)f(x)的解析式;
(2)畫出函數(shù)f(x)的圖像;
(3)寫出函數(shù)f(x)的單調(diào)區(qū)間及值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程是(為參數(shù)),以為極點, 軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且直線與曲線交于兩點.
(Ⅰ)求曲線的直角坐標(biāo)方程及直線恒過的定點的坐標(biāo);
(Ⅱ)在(Ⅰ)的條件下,若,求直線的普通方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線y=Asin(ωx+φ)(A>0,ω>0)上的一個最高點的坐標(biāo)為(,),由此點到相鄰最低點間的曲線與x軸交于點(π,0),φ∈(﹣,).
(1)求這條曲線的函數(shù)解析式;
(2)寫出函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)若曲線與曲線在點處有相同的切線,試討論函數(shù)的單調(diào)性;
(2)若,函數(shù)在上為增函數(shù),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量m=(cosx,-1),n=,函數(shù)f(x)=(m+n)·m.
(1)求函數(shù)f(x)的最小正周期;
(2)已知a,b,c分別為△ABC內(nèi)角A,B,C的對邊,A為銳角,a=1,c=,且f(A)恰是函數(shù)f(x)在上的最大值,求A,b和△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)以“綠色出行”為宗旨開展“共享單車”業(yè)務(wù).該地區(qū)某高級中學(xué)一興趣小組由9名高二級學(xué)生和6名高一級學(xué)生組成,現(xiàn)采用分層抽樣的方法抽取5人,組成一個體驗小組去市場體驗“共享單車”的使用.問:
(Ⅰ)應(yīng)從該興趣小組中抽取高一級和高二級的學(xué)生各多少人;
(Ⅱ)已知該地區(qū)有, 兩種型號的“共享單車”,在市場體驗中,該體驗小組的高二級學(xué)生都租型車,高一級學(xué)生都租型車.如果從組內(nèi)隨機(jī)抽取2人,求抽取的2人中至少有1人在市場體驗過程中租型車的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com