【題目】某城市的公交公司為了方便市民出行,科學(xué)規(guī)劃車輛投放,在一個(gè)人員密集流動(dòng)地段增設(shè)一個(gè)起點(diǎn)站,為了研究車輛發(fā)車間隔時(shí)間與乘客等候人數(shù)之間的關(guān)系,經(jīng)過(guò)調(diào)查得出了如下數(shù)據(jù):
間隔時(shí)間(分鐘) | 10 | 11 | 12 | 13 | 14 | 15 |
等待人數(shù)(人) | 23 | 25 | 26 | 29 | 28 | 31 |
調(diào)查小組先從這六組數(shù)據(jù)中選取四組數(shù)據(jù)作線性回歸分析,然后用剩下的兩組數(shù)據(jù)進(jìn)行檢驗(yàn)
(1)求從這六組數(shù)據(jù)中選取四組數(shù)據(jù)后,剩下的的兩組數(shù)據(jù)不相鄰的概率:
(2)若先取的是后面四組數(shù)據(jù),求關(guān)干的線性回歸方程;
(3)規(guī)定根據(jù)(2)中線性回歸方程預(yù)利的數(shù)據(jù)與用剩下的兩組實(shí)際數(shù)據(jù)相差不超過(guò)人,則所求出的線性回歸方程是“最佳回歸方程”,請(qǐng)判斷(2)中所求的是 “最佳回歸方程”嗎?為了使等候的乘客不超過(guò)人,則間隔時(shí)間設(shè)置為分鐘合適嗎?
附:對(duì)于一組組數(shù)據(jù), 其回歸直線 +的斜率和截距的最小二乘估計(jì)分別為: ,
【答案】(1);(2)見(jiàn)解析;(3)合適
【解析】
(1)由列舉法剩下的兩組有以下15種可能,相鄰的有5種,間接法即可求;
(2)由后四組數(shù)據(jù)求得及的值,可得線性回歸方程,分別取x=10,11求得y值,與原表格中對(duì)應(yīng)的y值作差判斷;
(3)直接由1.4x+9.6≤35,求得x值得答案.
(1)記這六組數(shù)據(jù)分別為剩下的兩組有以下15種可能: ,,,,,,,,,;其中剩下的的兩組數(shù)據(jù)相鄰的有這種,故 (兩組數(shù)據(jù)不相鄰) .
(2),,
,
關(guān)干的線性回歸方程為
當(dāng)時(shí),,,
當(dāng)時(shí),,故所求出的線性回歸方程是“最佳回歸方程”;
(3)由題1.4x+9.6≤35,解x≤18.14,故間隔時(shí)間設(shè)置為分鐘合適.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(2)若函數(shù)在區(qū)間上無(wú)零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】改革開(kāi)放40年,我國(guó)經(jīng)濟(jì)取得飛速發(fā)展,城市汽車保有量在不斷增加,人們的交通安全意識(shí)也需要不斷加強(qiáng).為了解某城市不同性別駕駛員的交通安全意識(shí),某小組利用假期進(jìn)行一次全市駕駛員交通安全意識(shí)調(diào)查.隨機(jī)抽取男女駕駛員各50人,進(jìn)行問(wèn)卷測(cè)評(píng),所得分?jǐn)?shù)的頻率分布直方圖如圖所示.規(guī)定得分在80分以上為交通安全意識(shí)強(qiáng).
安全意識(shí)強(qiáng) | 安全意識(shí)不強(qiáng) | 合計(jì) | |
男性 | |||
女性 | |||
合計(jì) |
(Ⅰ)求的值,并估計(jì)該城市駕駛員交通安全意識(shí)強(qiáng)的概率;
(Ⅱ)已知交通安全意識(shí)強(qiáng)的樣本中男女比例為4:1,完成2×2列聯(lián)表,并判斷有多大把握認(rèn)為交通安全意識(shí)與性別有關(guān);
(Ⅲ)在(Ⅱ)的條件下,從交通安全意識(shí)強(qiáng)的駕駛員中隨機(jī)抽取2人,求抽到的女性人數(shù)的分布列及期望.
附:,其中
0.010 | 0.005 | 0.001 | |
6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面ABCD平面PAD,,,,,E是PD的中點(diǎn).
證明:;
設(shè),點(diǎn)M在線段PC上且異面直線BM與CE所成角的余弦值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A.某班位同學(xué)從文學(xué)、經(jīng)濟(jì)和科技三類不同的圖書(shū)中任選一類,不同的結(jié)果共有種;
B.甲乙兩人獨(dú)立地解題,已知各人能解出的概率分別是,則題被解出的概率是;
C.某校名教師的職稱分布情況如下:高級(jí)占比,中級(jí)占比,初級(jí)占比,現(xiàn)從中抽取名教師做樣本,若采用分層抽樣方法,則高級(jí)教師應(yīng)抽取人;
D.兩位男生和兩位女生隨機(jī)排成一列,則兩位女生不相鄰的概率是.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,,,為的中點(diǎn).
(1)證明:平面;
(2)若點(diǎn)在棱上,且二面角為,求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn=2an-n.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè),記數(shù)列{bn}的前n項(xiàng)和為T(mén)n,證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在第二屆烏鎮(zhèn)互聯(lián)網(wǎng)大會(huì)中, 為了提高安保的級(jí)別同時(shí)又為了方便接待,現(xiàn)將其中的五個(gè)參會(huì)國(guó)的人員安排酒店住宿,這五個(gè)參會(huì)國(guó)要在、、三家酒店選擇一家,且每家酒店至少有一個(gè)參會(huì)國(guó)入住,則這樣的安排方法共有
A.種B.種
C.種D.種
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com