【題目】如圖,四棱錐P﹣ABCD中,ABCD為矩形,△PAD為等腰直角三角形,∠APD=90°,面PAD⊥面ABCD,且AB=1,AD=2,E、F分別為PC和BD的中點(diǎn).
(1)證明:EF∥面PAD;
(2)證明:面PDC⊥面PAD.
【答案】
(1)解:如圖,連接AC,
∵ABCD為矩形且F是BD的中點(diǎn),
∴AC必經(jīng)過F
又E是PC的中點(diǎn),
所以,EF∥AP
∵EF在面PAD外,PA在面內(nèi),
∴EF∥面PAD
(2)解:∵面PAD⊥面ABCD,CD⊥AD,面PAD∩面ABCD=AD,
∴CD⊥面PAD
又AP面PAD
∴AP⊥CD
又∵AP⊥PD,PD和CD是相交直線,AP⊥面PCD
又AD面PAD,所以,面PDC⊥面PAD
【解析】(1)證明EF∥面PAD,可用線面平行的判定定理,由題設(shè)及圖,可先證明EF∥AP再由線面平行的判定定理證明;(2)證明面PDC⊥面PAD,由判定定理知要先證明線面垂直,由題設(shè)及圖知,可先證AP⊥面PCD,再由面面垂直的判定定理證明面面垂直.
【考點(diǎn)精析】掌握直線與平面平行的判定和平面與平面垂直的判定是解答本題的根本,需要知道平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行;一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對邊,
(1)求A的大小;
(2)若a=7,求△ABC的周長的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的首項(xiàng)a1= ,an+1= ,n=1,2,…
(1)求證:{ ﹣1}是等比數(shù)列,并求出{an}的通項(xiàng)公式;
(2)證明:對任意的x>0,an≥ ﹣ ( ﹣x),n=1,2,…
(3)證明:n﹣ ≥a1+a2+…+an> .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若函數(shù)有零點(diǎn),其實(shí)數(shù)的取值范圍.
(Ⅱ)證明:當(dāng)時(shí), .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,E是棱CC1的中點(diǎn).
(1)證明:AC1∥平面BDE;
(2)證明:AC1⊥BD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別是A,B,C的對邊,且 sinA= .
(1)若a2﹣c2=b2﹣mbc,求實(shí)數(shù)m的值;
(2)若a=2,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若a,b,c∈R,且a>b,則下列不等式一定成立的是( )
A.a+c≥b﹣c
B.ac>bc
C. >0
D.(a﹣b)c2≥0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某貨運(yùn)員擬運(yùn)送甲、乙兩種貨物,每件貨物的體積、重量、可獲利潤如表所示:
體積(升/件) | 重量(公斤/件) | 利潤(元/件) | |
甲 | 20 | 10 | 8 |
乙 | 10 | 20 | 10 |
在一次運(yùn)輸中,貨物總體積不超過110升,總重量不超過100公斤,那么在合理的安排下,一次運(yùn)輸獲得的最大利潤為( )
A.65元
B.62元
C.60元
D.56元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知 = .
(1)求 的值
(2)若cosB= ,b=2,求△ABC的面積S.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com