【題目】環(huán)保部門要對所有的新車模型進行廣泛測試,以確定它的行車?yán)锍痰牡燃,右表是?100 輛新車模型在一個耗油單位內(nèi)行車?yán)锍蹋▎挝唬汗铮┑臏y試結(jié)果.

(Ⅰ)做出上述測試結(jié)果的頻率分布直方圖,并指出其中位數(shù)落在哪一組;

(Ⅱ)用分層抽樣的方法從行車?yán)锍淘趨^(qū)間[38,40)與[40,42)的新車模型中任取5輛,并從這5輛中隨機抽取2輛,求其中恰有一個新車模型行車?yán)锍淘赱40,42)內(nèi)的概率.

【答案】(Ⅰ)圖略,中位數(shù)在區(qū)間.(Ⅱ)

【解析】

1)畫出頻率分布直方圖后,找到頻率總和為時對應(yīng)的分組區(qū)間;

2)先利用分層抽樣計算每組內(nèi)抽取的輛數(shù),然后對車輛進行標(biāo)記,利用古典概型計算目標(biāo)事件的概率.

(Ⅰ)由題意可畫出頻率分布直方圖如圖所示:

組頻率總和為,第組頻率為,且 ,則由圖可知,中位數(shù)在區(qū)間.

(Ⅱ)由題意,設(shè)從中選取的車輛為,從中選取的車輛為,

則從這5輛車中抽取2輛的所有情況有10種,分別為

其中符合條件的有6種,,所以所求事件的概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在全國第五個“扶貧日”到來之前,某省開展“精準(zhǔn)扶貧,攜手同行”的主題活動,某貧困縣調(diào)查基層干部走訪貧困戶數(shù)量.鎮(zhèn)有基層干部60,鎮(zhèn)有基層干部60,鎮(zhèn)有基層干部80,每人都走訪了若干貧困戶,按照分層抽樣,三鎮(zhèn)共選40名基層干部,統(tǒng)計他們走訪貧困戶的數(shù)量,并將走訪數(shù)量分成5,,繪制成如圖所示的頻率分布直方圖.

(1)求這40人中有多少人來自鎮(zhèn),并估計三鎮(zhèn)的基層干部平均每人走訪多少貧困戶;(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)

(2)如果把走訪貧困戶達到或超過25戶視為工作出色,以頻率估計概率,三鎮(zhèn)的所有基層干部中隨機選取3,記這3人中工作出色的人數(shù)為,的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動點到直線的距離比到定點的距離大1.

(1)求動點的軌跡的方程.

(2)若為直線上一動點,過點作曲線的兩條切線,,切點為,的中點.

①求證:軸;

②直線是否恒過一定點?若是,求出這個定點的坐標(biāo);若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是拋物線上任意一點,,且點為線段的中點.

(Ⅰ)求點的軌跡的方程;

(Ⅱ)若為點關(guān)于原點的對稱點,過的直線交曲線、 兩點,直線交直線于點,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={1,2,3,4}和集合B={1,2,3,n},其中n≥5.從集合A中任取三個不同的元素,其中最小的元素用S表示;從集合B中任取三個不同的元素,其中最大的元素用T表示.記XTS.

(1)當(dāng)n5時,求隨機變量X的概率分布和數(shù)學(xué)期望

(2)求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某生鮮批發(fā)店每天從蔬菜生產(chǎn)基地以5元/千克購進某種綠色蔬菜,售價8元/千克,若每天下午4點以前所購進的綠色蔬菜沒有售完,則對未售出的綠色蔬菜降價處理,以3元/千克出售.根據(jù)經(jīng)驗,降價后能夠把剩余蔬菜全部處理完畢,且當(dāng)天不再進貨.該生鮮批發(fā)店整理了過往30天(每天下午4點以前)這種綠色蔬菜的日銷售量(單位:千克)得到如下統(tǒng)計數(shù)據(jù)(視頻率為概率)(注:x,y∈N*

每天下午4點前銷售量

350

400

450

500

550

天數(shù)

3

9

x

y

2

(1)求在未來3天中,至少有1天下午4點前的銷售量不少于450千克的概率.

(2)若該生鮮批發(fā)店以當(dāng)天利潤期望值為決策依據(jù),當(dāng)購進450千克比購進500千克的利潤期望值大時,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,EA⊥平面ABCD,四邊形ABCD為等腰梯形,,且,AD=AE=1,∠ABC=60°,EF=AC,且EFAC.

(Ⅰ)證明:AB⊥CF;

(Ⅱ)求二面角B﹣EF﹣D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)若,求的最小值;

(2)若,求的單調(diào)區(qū)間;

(3)試比較的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓:的左、右點分別為在橢圓上,且

(1)求橢圓的方程;

(2)過點(1,0)作斜率為的直線交橢圓MN兩點,若求直線的方程;

(3)PQ為橢圓上的兩個動點,為坐標(biāo)原點,若直線的斜率之積為求證:為定值.

查看答案和解析>>

同步練習(xí)冊答案