已知拋物線的準(zhǔn)線經(jīng)過橢圓的左焦點(diǎn),且經(jīng)過拋物線與橢圓兩個(gè)交點(diǎn)的弦過拋物線的焦點(diǎn),則橢圓的離心率為_____________

試題分析:因?yàn),拋物線的準(zhǔn)線經(jīng)過橢圓的左焦點(diǎn),,所以,c=, 又經(jīng)過拋物線與橢圓兩個(gè)交點(diǎn)的弦過拋物線的焦點(diǎn),所以,整理得,,解得,,(舍去),所以橢圓的離心率為。
點(diǎn)評(píng):中檔題,本題綜合考查拋物線、橢圓的幾何性質(zhì),確定橢圓的離心率,要熟悉a,b,c,e的關(guān)系。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓的右焦點(diǎn)為為常數(shù),離心率為,過焦點(diǎn)、傾斜角為的直線交橢圓與M,N兩點(diǎn),
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)當(dāng)=時(shí),=,求實(shí)數(shù)的值;
(3)試問的值是否與直線的傾斜角的大小無關(guān),并證明你的結(jié)論

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知兩條直線 :y="m" 和: y=(m>0),與函數(shù)的圖像從左至右相交于點(diǎn)A,B ,與函數(shù)的圖像從左至右相交于C,D .記線段AC和BD在X軸上的投影長(zhǎng)度分別為a ,b ,當(dāng)m 變化時(shí),的最小值為
A.           B.        C.    D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

雙曲線的離心率等于2,且與橢圓有相同的焦點(diǎn),求此雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知、分別為橢圓的上、下焦點(diǎn),其中也是拋物線的焦點(diǎn),點(diǎn)在第二象限的交點(diǎn),且。

(Ⅰ)求橢圓的方程;
(Ⅱ)已知點(diǎn)(1,3)和圓,過點(diǎn)的動(dòng)直線與圓相交于不同的兩點(diǎn),在線段取一點(diǎn),滿足:,)。
求證:點(diǎn)總在某定直線上。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓的左焦點(diǎn)為F,過點(diǎn)F的直線交橢圓于A、B兩點(diǎn),線段AB的中點(diǎn)為G,AB的中垂線與x軸和y軸分別交于D、E兩點(diǎn).

(Ⅰ)若點(diǎn)G的橫坐標(biāo)為,求直線AB的斜率;
(Ⅱ)記△GFD的面積為S1,△OED(O為原點(diǎn))的面積為S2
試問:是否存在直線AB,使得S1=S2?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓過點(diǎn),橢圓左右焦點(diǎn)分別為,上頂點(diǎn)為,為等邊三角形.定義橢圓C上的點(diǎn)的“伴隨點(diǎn)”為.
(1)求橢圓C的方程;
(2)求的最大值;
(3)直線l交橢圓CAB兩點(diǎn),若點(diǎn)A、B的“伴隨點(diǎn)”分別是P、Q,且以PQ為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O.橢圓C的右頂點(diǎn)為D,試探究ΔOAB的面積與ΔODE的面積的大小關(guān)系,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓的右焦點(diǎn)為,右準(zhǔn)線為,離心率為,點(diǎn)在橢圓上,以為圓心,為半徑的圓與的兩個(gè)公共點(diǎn)是

(1)若是邊長(zhǎng)為的等邊三角形,求圓的方程;
(2)若三點(diǎn)在同一條直線上,且原點(diǎn)到直線的距離為,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓(a>b>0)的離心率為,以原點(diǎn)為圓心,橢圓短半軸長(zhǎng)半徑的圓與直線y=x+ 相切.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓在軸上方的一個(gè)交點(diǎn)為,是橢圓的右焦點(diǎn),試探究以
直徑的圓與以橢圓長(zhǎng)軸為直徑的圓的位置關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案