【題目】在平面直角坐標系xOy中,直線l: (t為參數(shù)),與曲線C: (k為參數(shù))交于A,B兩點,求線段AB的長.

【答案】解:(方法一)直線l的參數(shù)方程化為普通方程得4x﹣3y=4, 將曲線C的參數(shù)方程化為普通方程得y2=4x.
聯(lián)立方程組 解得 ,或
所以A(4,4),B( ,﹣1).
所以AB═
(方法二)將曲線C的參數(shù)方程化為普通方程得y2=4x.
直線l的參數(shù)方程代入拋物線C的方程得 t)2=4(1+ ),即4t2﹣15t﹣25=0,
所以 t1+t2= ,t1t2=﹣
所以AB=|t1﹣t2|= =
【解析】方法一:直線l的參數(shù)方程化為普通方程得4x﹣3y=4,將曲線C的參數(shù)方程化為普通方程得y2=4x.聯(lián)立求出交點坐標,利用兩點之間的距離公式即可得出.方法二:將曲線C的參數(shù)方程化為普通方程得y2=4x. 直線l的參數(shù)方程代入拋物線C的方程得 4t2﹣15t﹣25=0,利用AB=|t1﹣t2|= 即可得出.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,焦點在x軸上的橢圓C: =1經(jīng)過點(b,2e),其中e為橢圓C的離心率.過點T(1,0)作斜率為k(k>0)的直線l交橢圓C于A,B兩點(A在x軸下方).

(1)求橢圓C的標準方程;
(2)過點O且平行于l的直線交橢圓C于點M,N,求 的值;
(3)記直線l與y軸的交點為P.若 = ,求直線l的斜率k.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)當時,求滿足的取值:

(2)若函數(shù)是定義在上的奇函數(shù)

①存在,不等式有解,求的取值范圍;

②若函數(shù)滿足,若對任意,不等式恒成立,求實數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以坐標原點為極點,軸的非負半軸為極軸建立極坐標系.己知

的極坐標為,曲線的極坐標方程為,曲線的參數(shù)方程為,為參數(shù)).曲線和曲線相交于兩點.

(1)求點的直角坐標;

(2)求曲線的直角坐標方程和曲線的普通方程;

(3)求的面枳,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,△ABC的頂點A,C在圓O上,B在圓外,線段AB與圓O交于點M.
(1)若BC是圓O的切線,且AB=8,BC=4,求線段AM的長度;
(2)若線段BC與圓O交于另一點N,且AB=2AC,求證:BN=2MN.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若在區(qū)間上是單調遞增函數(shù),求實數(shù)的取值范圍;

(2)若處有極值10,求的值;

(3)若對任意的,有恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學校藝術節(jié)對同一類的,,,四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:

甲說:“是作品獲得一等獎”;

乙說:“作品獲得一等獎”;

丙說:“,兩項作品未獲得一等獎”;

丁說:“是作品獲得一等獎”.

若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知F1 , F2分別是長軸長為 的橢圓C: 的左右焦點,A1 , A2是橢圓C的左右頂點,P為橢圓上異于A1 , A2的一個動點,O為坐標原點,點M為線段PA2的中點,且直線PA2與OM的斜率之積恒為﹣
(1)求橢圓C的方程;
(2)設過點F1且不與坐標軸垂直的直線C(2,2,0)交橢圓于A,B兩點,線段AB的垂直平分線與B(2,0,0)軸交于點N,點N橫坐標的取值范圍是 ,求線段AB長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)f(x)=sin2x的圖象沿x軸向右平移φ(φ>0)個單位長度后得到函數(shù)g(x)的圖象,若函數(shù)g(x)的圖象關于y軸對稱,則當φ取最小的值時,g(0)=

查看答案和解析>>

同步練習冊答案