【題目】數(shù)列{an}與{bn}滿足:①a1=a<0,b1=b>0,②當(dāng)k≥2時(shí),若ak1+bk1≥0,則ak=ak1 , bk= ;若ak1+bk1<0,則ak= ,bk=bk1
(Ⅰ)若a=﹣1,b=1,求a2 , b2 , a3 , b3的值;
(Ⅱ)設(shè)Sn=(b1﹣a1)+(b2﹣a2)+…+(bn﹣an),求Sn(用a,b表示);
(Ⅲ)若存在n∈N* , 對(duì)任意正整數(shù)k,當(dāng)2≤k≤n時(shí),恒有bk1>bk , 求n的最大值(用a,b表示).

【答案】解:(Ⅰ)a2=﹣1,b2=0,a3= ,b3=0;
(Ⅱ)∵ = , = ,
∴無(wú)論是ak1+bk1≥0,還是ak1+bk1<0,都有bk﹣ak= ,
即{bk﹣ak}是以b1﹣a1=b﹣a為首項(xiàng), 為公比的等比數(shù)列,
所以Sn=(b1﹣a1)+(b2﹣a2)+…+(bn﹣an)= ;
(Ⅲ)∵bk1>bk , 及數(shù)列{an}與{bn}滿足的關(guān)系,
∴ak1+bk1≥0,∴ak=ak1 ,
即對(duì)任意正整數(shù)k,當(dāng)2≤k≤n時(shí),恒有ak=a,
由(Ⅱ)知bk﹣ak= ,∴bk=a+ ,
所以ak1+bk1= ,解得 ,
所以n的最大值為不超過(guò) 的最大整數(shù)
【解析】(Ⅰ)由題意可直接寫(xiě)出答案;(Ⅱ)分情況計(jì)算bk﹣ak , 得{bk﹣ak}是以b1﹣a1=b﹣a為首項(xiàng), 為公比的等比數(shù)列,從而可得Sn;(Ⅲ)由bk1>bk , 數(shù)列{an}與{bn}滿足的關(guān)系倒推出對(duì)任意正整數(shù)k,當(dāng)2≤k≤n時(shí),恒有ak=a,結(jié)合(Ⅱ)知 ,解之即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)滿足.

1)若的定義域?yàn)?/span>,且對(duì)定義域內(nèi)所有都成立,求;

2)若的定義域?yàn)?/span>時(shí),求的值域;

3)若的定義域?yàn)?/span>,設(shè)函數(shù),當(dāng)時(shí),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)x,y滿足約束條件 ,目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值M,若M的取值范圍是[1,2],則點(diǎn)M(a,b)所經(jīng)過(guò)的區(qū)域面積=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2sinωxcosωx+2 sin2ωx﹣ (ω>0)的最小正周期為π.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)將函數(shù)f(x)的圖象向左平移 個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)在 上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面,,,,的中點(diǎn).

(1)求證:;

(2)求證:;

(3)求二面角E-AB-C的正切值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)解不等式:

(2)有4名男生和3名女生

i)選出4人去參加座談會(huì),如果3人中必須既有男生又有女生,有多少種選法?

ii)7人排成一排,甲乙二人之間恰好有2個(gè)人,有多少種不同的排法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=12,,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是

A. yx具有正的線性相關(guān)關(guān)系

B. 回歸直線過(guò)樣本點(diǎn)的中心(

C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg

D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=e|lnx|(e為自然對(duì)數(shù)的底數(shù)).若x1≠x2且f(x1)=f(x2),則下列結(jié)論一定不成立的是(
A.x2f(x1)>1
B.x2f(x1)=1
C.x2f(x1)<1
D.x2f(x1)<x1f(x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}的公差d≠0,且a1 , a3 , a13成等比數(shù)列,若a1=1,Sn是數(shù)列{an}前n項(xiàng)的和,則 (n∈N+)的最小值為(
A.4
B.3
C.2 ﹣2
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案