【題目】[選修4-4:坐標系與參數(shù)方程]在平面坐標系中xOy中,已知直線l的參考方程為(t為參數(shù)),曲線C的參數(shù)方程為(s為參數(shù))。設p為曲線C上的動點,求點P到直線l的距離的最小值
【答案】當點的坐標為時,曲線上點到直線的距離取到最小值.
【解析】試題分析:先將直線的參考方程化為普通方程,再根據(jù)點到直線距離公式得點到直線的的距離,最后根據(jù)二次函數(shù)最值的求法求最值.
試題解析:解:直線的普通方程為.
因為點在曲線上,設,
從而點到直線的的距離,
當時, .
因此當點的坐標為時,曲線上點到直線的距離取到最小值.
點睛:(1)將參數(shù)方程化為普通方程,消參數(shù)時常用代入法、加減消元法、三角恒等變換法;(2)把參數(shù)方程化為普通方程時,要注意哪一個量是參數(shù),并且要注意參數(shù)的取值對普通方程中x及y的取值范圍的影響.
科目:高中數(shù)學 來源: 題型:
【題目】已知在平面坐標系內,O為坐標原點,向量 =(1,7), =(5,1), =(2,1),點M為直線OP上的一個動點.
(1)當 取最小值時,求向量 的坐標;
(2)在點M滿足(I)的條件下,求∠AMB的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線C1:y=cos x,C2:y=sin (2x+),則下面結論正確的是
A. 把C1上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線C2
B. 把C1上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線C2
C. 把C1上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線C2
D. 把C1上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線C2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)有極值,且導函數(shù)的極值點是的零點。(極值點是指函數(shù)取極值時對應的自變量的值)
求b關于a的函數(shù)關系式,并寫出定義域;
證明:b>3a;
若, 這兩個函數(shù)的所有極值之和不小于,求a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個化肥廠生產甲種混合肥料1車皮、乙種混合肥料1車皮所需要的主要原料如表:
原料 | 磷酸鹽(單位:噸) | 硝酸鹽(單位:噸) |
甲 | 4 | 20 |
乙 | 2 | 20 |
現(xiàn)庫存磷酸鹽8噸、硝酸鹽60噸,計劃在此基礎上生產若干車皮的甲、乙兩種混合肥料.
(1)設x,y分別表示計劃生產甲、乙兩種肥料的車皮數(shù),試列出x,y滿足的數(shù)學關系式,并畫出相應的平面區(qū)域;
(2)若生產1車皮甲種肥料,利潤為3萬元;生產1車皮乙種肥料,利潤為2萬元.那么分別生產甲、乙兩種肥料多少車皮,能夠產生最大利潤?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的各項均為正數(shù),前n和為Sn , 且Sn= (n∈N*).
(1)求證:數(shù)列{an}是等差數(shù)列;
(2)設bn=an3n , 求數(shù)列{bn}的前n項的和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,M、N分別為CD和A1D1的中點,那么異面直線AM與BN 所成的角是( )
A.90°
B.60°
C.45°
D.30°
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com