分析 若y=f(x)在區(qū)間(-1,1)內(nèi)有零點,則y=f(x)在區(qū)間[-$\frac{1}{2}$,1)內(nèi)有零點,即$\left\{\begin{array}{l}f(-\frac{1}{2})≤0\\ f(1)>0\end{array}\right.$,解得答案.
解答 解:函數(shù)f(x)=x2+x-2a的圖象是開口朝上,且以直線x=-$\frac{1}{2}$為對稱軸的拋物線,
若y=f(x)在區(qū)間(-1,1)內(nèi)有零點,
則y=f(x)在區(qū)間[-$\frac{1}{2}$,1)內(nèi)有零點,
即$\left\{\begin{array}{l}f(-\frac{1}{2})≤0\\ f(1)>0\end{array}\right.$,即$\left\{\begin{array}{l}-\frac{1}{4}-2a≤0\\ 2-2a>0\end{array}\right.$,
解得:a∈[-$\frac{1}{8}$,1)
點評 本題考查的知識點是二次函數(shù)的圖象和性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
f(1)=-2 | f(1.5)=0.625 |
f(1.25)=-0.984 | f(1.375)=-0.260 |
f(1.438)=0.165 | f(1.4065)=-0.052 |
A. | 1.2 | B. | 1.3 | C. | 1.4 | D. | 1.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | 2 | C. | $\frac{8}{3}$ | D. | $\frac{{16\sqrt{2}}}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com