【題目】下列說法錯誤的是(  )

A. “sinθ”是“θ=30°”的充分不必要條件

B. 命題“若a=0,則ab=0”的否命題是“若a≠0,則ab≠0”

C. ABC中,“sin A>sin B”是“AB”的充要條件

D. 如果命題“綈p”與命題“pq”都是真命題,那么命題q一定是真命題

【答案】A

【解析】

對于A中,由三角函數(shù)的定義,可得“”是“”的必要不充分條件,所以是錯誤的;對于B中,根據(jù)否命題的概念,可知是正確的;對于C中,在中,由正弦定理,可得是正確的;對于D中,復合命題的真值表可得命題是真命題,即可得到答案.

對于A中,因為,得,反之時,則,所以“”是“”的必要不充分條件,所以是錯誤的;

對于B中,根據(jù)否命題的概念,可知是正確的;

對于C中,在中,由正弦定理,所以是正確的;

對于D中,由命題“非”為真命題,則為假命題,且“”為真命題,則一定是真命題,所以正確的,故選A.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在如圖的表格中,每格填上一個數(shù)字后,使每一橫行成等差數(shù)列,每一縱列成等比數(shù)列,則abc的值為(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中錯誤的個數(shù)為:(

的圖像關于點對稱;②的圖像關于點對稱;

的圖像關于直線對稱;④的圖像關于直線對稱。

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓:,直線.

(1)若直線與圓相切,的值;

(2)若直線與圓交于不同的兩點,當∠AOB為銳角時,k的取值范圍;

(3),是直線上的動點,作圓的兩條切線,切點為,探究:直線是否過定點。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(x﹣2)ex+a(x﹣1)2
(1)討論f(x)的單調性;
(2)若f(x)有兩個零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知下列四個命題:

①若tan θ=2,則sin 2θ

②函數(shù)f(x)=lg(x)是奇函數(shù);

③“a>b”是“2a>2b”的充分不必要條件;

④在△ABC中,若sin Acos B=sin C,則△ABC是直角三角形.

其中所有真命題的序號是________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lg(1+x)+lg(1﹣x).
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性;
(3)求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲廠以x千克/小時的速度勻速生產某種產品(生產條件要求1≤x≤10),每小時可獲得的利潤是100(5x+1﹣ )元.
(1)要使生產該產品2小時獲得的利潤不低于3000元,求x的取值范圍;
(2)要使生產900千克該產品獲得的利潤最大,問:甲廠應該選取何種生產速度?并求此最大利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在ABC中,角A,B,C的對邊分別為a,b,c,若△ABC為銳角三角形,且滿足sinB(1+2cosC)=2sinAcosC+cosAsinC,則下列等式成立的是( 。
A.a=2b
B.b=2a
C.A=2B
D.B=2A

查看答案和解析>>

同步練習冊答案