拋物線的弦與過弦的端點的兩條切線所圍成的三角形常被稱為阿基米德三角形,阿基米德三角形有一些有趣的性質(zhì),如:若拋物線的弦過焦點,則過弦的端點的兩條切線的交點在其準線上.設(shè)拋物線,弦AB過焦點,△ABQ為其阿基米德三角形,則△ABQ的面積的最小值為
A.B.C.D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知焦點在x軸上,離心率為的橢圓的一個頂點是拋物線的焦點,過橢圓右焦點F的直線l交橢圓于A、B兩點,交y軸于點M,且
(1)求橢圓的方程;
(2)證明:為定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分11分)已知拋物線關(guān)于軸對稱,它的頂點在坐標原點,并且經(jīng)過點
(1)求拋物線的標準方程;
(2)若的三個頂點在拋物線上,且點的橫坐標為1,過點分別作拋物線的切線,兩切線相交于點,直線軸交于點,當直線的斜率在上變化時,直線斜率是否存在最大值,若存在,求其最大值和直線的方程;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

我國計劃發(fā)射火星探測器,該探測器的運行軌道是以火星(其半徑百公里)的中心為一個焦點的橢圓. 如圖,已知探測器的近火星點(軌道上離火星表面最近的點)到火星表面的距離為百公里,遠火星點(軌道上離火星表面最遠的點)到火星表面的距離為800百公里. 假定探測器由近火星點第一次逆時針運行到與軌道中心的距離為百公里時進行變軌,其中、分別為橢圓的長半軸、短半軸的長,求此時探測器與火星表面的距離(精確到1百公里).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)設(shè)直線(其中為整數(shù))與橢圓交于不同兩點,,與雙曲線交于不同兩點,,問是否存在直線,使得向量,若存在,指出這樣的直線有多少條?若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若直線與曲線有公共點,則b的取值范圍是
A.[,]B.[,3]
C.[-1,]D.[,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè),則直線和曲線的大致圖形可以是                                                       (     )
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線(a>0,b>0)的左、右焦點為F1(-c,0),F(xiàn)2(c,0),若雙曲線上存在點P,使,則雙曲線的離心率e的取值范圍(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若拋物線的焦點與橢圓右焦點重合,則的值為(  )
A.-2B.2C.-4D.4

查看答案和解析>>

同步練習(xí)冊答案