(本題滿分14分)設(shè)數(shù)列的前項(xiàng)和為,且滿足=1,2,3,…).

(1)求數(shù)列的通項(xiàng)公式;

(2)若數(shù)列滿足,且,求數(shù)列的通項(xiàng)公式;

 

【答案】

 (1) ; (2) 。

【解析】

試題分析:(Ⅰ)由題設(shè)知a1=1,an+Sn=2,an+1+Sn+1=2,兩式相減:an+1-an+an+1=0,故有2an+1=an,,n∈N+,由此能求出數(shù)列{an}的通項(xiàng)公式.

(Ⅱ)由bn+1=bn+an(n=1,2,3,…),知bn+1-bn=()n-1,再由累加法能推導(dǎo)出bn=3-2( )n-1(n=1,2,3,…).

解:(1)當(dāng)時(shí),,則---------------2分

當(dāng)時(shí) ,

--------------------------------4分

所以,數(shù)列是以首項(xiàng),公比為的等比數(shù)列,從而----8分

 (2) 

當(dāng)時(shí),--10分

      -----------12分

  又滿足,---------14分

考點(diǎn):本試題主要第(Ⅰ)題考查迭代法求數(shù)列通項(xiàng)公式的方法,第(Ⅱ)題考查累加法求數(shù)列通項(xiàng)公式的方法。

點(diǎn)評:解決該試題的關(guān)鍵是能夠利用迭代法表示出通項(xiàng)公式的運(yùn)用,尋找規(guī)律,以及根據(jù)列加法求解數(shù)列的通項(xiàng)公式的問題。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分)

設(shè)函數(shù),。

(1)若,過兩點(diǎn)的中點(diǎn)作軸的垂線交曲線于點(diǎn),求證:曲線在點(diǎn)處的切線過點(diǎn);

(2)若,當(dāng)時(shí)恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分)設(shè)函數(shù)(1)求函數(shù)的單調(diào)區(qū)間;(2)求在[—1,2]上的最小值; (3)當(dāng)時(shí),用數(shù)學(xué)歸納法證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011——2012學(xué)年湖北省洪湖二中高三八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本題滿分14分)設(shè)橢圓的左、右焦點(diǎn)分別為F1
F2,直線過橢圓的一個(gè)焦點(diǎn)F2且與橢圓交于P、Q兩點(diǎn),若的周長為。
(1)求橢圓C的方程;
(2)設(shè)橢圓C經(jīng)過伸縮變換變成曲線,直線與曲線相切
且與橢圓C交于不同的兩點(diǎn)A、B,若,求面積的取值范圍。(O為坐標(biāo)原點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省杭州市高三寒假作業(yè)數(shù)學(xué)卷三 題型:解答題

(本題滿分14分)設(shè)M是由滿足下列條件的函數(shù)構(gòu)成的集合:“①方有實(shí)數(shù)根;②函數(shù)的導(dǎo)數(shù)滿足

 (I)證明:函數(shù)是集合M中的元素;

 (II)證明:函數(shù)具有下面的性質(zhì):對于任意,都存在,使得等式成立。 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省揭陽市高三調(diào)研檢測數(shù)學(xué)理卷 題型:解答題

本題滿分14分)

設(shè)函數(shù).

(1)若,求函數(shù)的極值;

(2)若,試確定的單調(diào)性;

(3)記,且上的最大值為M,證明:

 

 

查看答案和解析>>

同步練習(xí)冊答案