【題目】在某大學自主招生考試中,所有選報Ⅱ類志向的考生全部參加了“數(shù)學與邏輯”和“閱讀與表達”兩個科目的考試,成績分為A,B,C,D,E五個等級.某考場考生的兩科考試成績的數(shù)據(jù)統(tǒng)計如圖所示,其中“數(shù)學與邏輯”科目的成績?yōu)锽的考生有10人.
(Ⅰ)求該考場考生中“閱讀與表達”科目中成績?yōu)锳的人數(shù);
(Ⅱ)若等級A,B,C,D,E分別對應5分,4分,3分,2分,1分,求該考場考生“數(shù)學與邏輯”科目的平均分;
(Ⅲ)已知參加本考場測試的考生中,恰有兩人的兩科成績均為A.在至少一科成績?yōu)锳的考生中,隨機抽取兩人進行訪談,求這兩人的兩科成績均為A的概率.

【答案】解:(Ⅰ)因為“數(shù)學與邏輯”科目中成績等級為B的考生有10人, 所以該考場有10÷0.25=40人,
所以該考場考生中“閱讀與表達”科目中成績等級為A的人數(shù)為:
40×(1﹣0.375﹣0.375﹣0.15﹣0.025)=40×0.075=3人;
(Ⅱ)該考場考生“數(shù)學與邏輯”科目的平均分為:
×[1×(40×0.2)+2×(40×0.1)+3×(40×0.375)+4×(40×0.25)+5×(40×0.075)]=2.9;
(Ⅲ)因為兩科考試中,共有6人得分等級為A,又恰有兩人的兩科成績等級均為A,
所以還有2人只有一個科目得分為A,
設這四人為甲,乙,丙,丁,其中甲,乙是兩科成績都是A的同學,
則在至少一科成績等級為A的考生中,隨機抽取兩人進行訪談,基本事件空間為:
Ω={{甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁},{丙,丁}},一共有6個基本事件.
設“隨機抽取兩人進行訪談,這兩人的兩科成績等級均為A”為事件B,所以事件B中包含的基本事件有1個,
則P(B)=
【解析】(Ⅰ)根據(jù)“數(shù)學與邏輯”科目中成績等級為B的考生人數(shù),結(jié)合樣本容量=頻數(shù)÷頻率得出該考場考生人數(shù),再利用頻率和為1求出等級為A的頻率,從而得到該考場考生中“閱讀與表達”科目中成績等級為A的人數(shù).(Ⅱ)利用平均數(shù)公式即可計算該考場考生“數(shù)學與邏輯”科目的平均分.(Ⅲ)通過列舉的方法計算出選出的2人所有可能的情況及這兩人的兩科成績等級均為A的情況;利用古典概型概率公式求出隨機抽取兩人進行訪談,這兩人的兩科成績等級均為A的概率.
【考點精析】利用平均數(shù)、中位數(shù)、眾數(shù)對題目進行判斷即可得到答案,需要熟知⑴平均數(shù)、眾數(shù)和中位數(shù)都是描述一組數(shù)據(jù)集中趨勢的量;⑵平均數(shù)、眾數(shù)和中位數(shù)都有單位;⑶平均數(shù)反映一組數(shù)據(jù)的平均水平,與這組數(shù)據(jù)中的每個數(shù)都有關系,所以最為重要,應用最廣;⑷中位數(shù)不受個別偏大或偏小數(shù)據(jù)的影響;⑸眾數(shù)與各組數(shù)據(jù)出現(xiàn)的頻數(shù)有關,不受個別數(shù)據(jù)的影響,有時是我們最為關心的數(shù)據(jù).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x+1|﹣|x|+a.
(1)若a=0,求不等式f(x)≥x的解集;
(2)若對任意x∈R,f(x)≥0恒成立,求a的范圍;
(3)若方程f(x)=x有三個不同的解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)設,求的值;

(2)已知cos(75°+α),且﹣180°<α<﹣90°,求cos(15°﹣α)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某幾何體的正視圖與側(cè)視圖都是邊長為1的正方形,且體積為 .則該幾何體的俯視圖可以是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓E: + =1(a>b>0)的離心率e= ,并且經(jīng)過定點P( ). (Ⅰ)求橢圓E的方程;
(Ⅱ)問是否存在直線y=﹣x+m,使直線與橢圓交于A、B兩點,滿足 = ,若存在求m值,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)招聘大學畢業(yè)生,經(jīng)過綜合測試,錄用了14名女生和6名男生,這20名學生的測試成績?nèi)缜o葉圖所示(單位:分),記成績不小于80分者為等,小于80分者為等.

(1)求女生成績的中位數(shù)及男生成績的平均數(shù);

(2)如果用分層抽樣的方法從等和等中共抽取5人組成“創(chuàng)新團隊”,則從等和等中分別抽幾人?

(3)在(2)問的基礎上,現(xiàn)從該“創(chuàng)新團隊”中隨機抽取2人,求至少有1人是等的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設常數(shù)使方程在區(qū)間上恰有三個解,則實數(shù)的值為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設O是坐標原點,橢圓C:x2+3y2=6的左右焦點分別為F1 , F2 , 且P,Q是橢圓C上不同的兩點, (Ⅰ)若直線PQ過橢圓C的右焦點F2 , 且傾斜角為30°,求證:|F1P|、|PQ|、|QF1|成等差數(shù)列;
(Ⅱ)若P,Q兩點使得直線OP,PQ,QO的斜率均存在.且成等比數(shù)列.求直線PQ的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐的底面是正方形,底面ABCD,點E在棱PB上.

求證:平面平面PDB

,且EPB的中點時,求AE與平面PDB所成的角的大小.

查看答案和解析>>

同步練習冊答案