等比數(shù)列{an}中,a2•a7•a15=64,則a8=


  1. A.
    2
  2. B.
    3
  3. C.
    4
  4. D.
    6
C
分析:由等比數(shù)列的性質(zhì)可得a2•a15=a8•a9,代入可得a7•a8•a9==64,解之即可.
解答:由等比數(shù)列的性質(zhì)可得a2•a15=a8•a9
由已知可得a2•a7•a15=a7•a8•a9=64,
而a7•a9=,故a7•a8•a9==64,
解得a8=4,
故選C
點評:本題考查等比數(shù)列的性質(zhì)的應(yīng)用,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}中,a2=18,a4=8,則公比q等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,a1=0,an+1=
1
2-an

(Ⅰ)求數(shù)列{an}的通項公式an;
(Ⅱ)設(shè)數(shù)列{an}的前n項和為Sn,證明:Sn<n-ln(n+1);
(Ⅲ)設(shè)bn=an
9
10
n,證明:對任意的正整數(shù)n、m,均有|bn-bm|<
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,a3=2,a7=32,則a5=
8
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,an=2×3n-1,則由此數(shù)列的奇數(shù)項所組成的新數(shù)列的前n項和為
9n-1
4
9n-1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,已知對n∈N*有a1+a2+…+an=2n-1,那么
a
2
1
+
a
2
2
+…+
a
2
n
等于( 。

查看答案和解析>>

同步練習(xí)冊答案